_

Invalidate and Update
Protocols

Lecture 14
(Chapter 7, cont.)

E. F. Gehringer,
based on slides by Yan Solihin

CSC/ECE 506: Architecture of Parallel Computers

1

Lecture 15 Outline

» MSI protocol
— State diagram
— Animations

* MESI protocol
» Dragon protocol vak | Update
* Firefly protocol

3-state | MSI Firefly

4-state | MESI | Dragon

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Basic MSI| Writeback Invalidation Protocol

+ States
« Invalid (I)
« Shared (S): one or more copies, and memory copy is up-to-date
« Dirty or Modified (M): only one copy
* Processor Events:
» PrRd (read), PrWr (write)
» Bus Transactions

« BusRd: asks for copy with no intent to modify
« BusRdX: asks for copy with intent to modify (instead of BusWr)
+ Flush: updates memory

» Actions
« Update state, perform bus transaction, flush value onto bus

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

State-Transition Diagrams

» On the following slides, we will display the
state-transition diagrams
« for processor-initiated transactions
« for bus-initiated transactions

» We will see transitions of the following
form:
* Invalidation: (Any) -> |
* Intervention: {Exclusive, Modified} - Shared

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor-Initiated Transactions

PrRd/ — PrRd/-

PrWr/BusRdX

Why does a PrWr in
state S induce a
BusRdX?

PrWr/BusRdX

PrRd/BusRd

NC STATE UNIVERSITY

5

CSC/ECE 506: Architecture of Parallel Computers

MSI: Bus-Initiated Transactions

Thus, valid
BusRI = data must be

supplied
by memor
BusRd/Flush 4 Y
BusRdX/Flush

BusRdX/ —

Fill'in the last two

PRl = transitions here.

BusRdX/ —

INC STATE UNIVERSITY

6

CSC/ECE 506: Architecture of Parallel Computers



MSI: Processor P, Reads A

MSI State Transition Diagram

PrWr/BusRdX

|
BusRdX/Flush
'

N

BusRdX/— |

\
PrRd/BusRd /
PRI/ /

BusRd— |/
! /

Prwr/BusRd;

—> Processor-lnitiated transactions

-~ Bus-Snooper-initiated transactions|
CSC/ECE 506: Architecture of Parallel Computers

NC STATE UNIVERSITY

CSC/ECE 506: Architecture of Parallel Computers

NC STATE UNIVERSITY

MSI: Processor P, Reads A

Lecture 15 Outline
» MSI protocol Q Q Q
I | — [ —

— State diagram
— Animations
* MESI protocol II fl fl
(CaRtroNer )

Inval-
7=

.
Dragon protocol ek | ate
N .
Firefly protocol i R
NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

4-state | MESI | Dragon
8

Firefly

MSI Visualization — Start State MSI: Processor P, Reads A

Q 0 ©

C D
I I

C D C D C r)
[ I 1
Controller ) Controller
7=

CSC/ECE 506: Architecture of Parallel Computers

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers NC STATE UNIVERSITY

9



MSI: Processor P, Reads A

Q 0 ©

€ r| ('S D (s D
I I I

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P, Writes A = 2

A=2'W™] [ T [ ]
(S D (S D ('S D
I I I

MSI: Processor P, Writes A = 2

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

| — |
(Snooper ) (Snooper ) (“Snooper )
I I I

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

14

MSI: Processor P; Reads A

@@(@

I
Srooper) CSrooper) Corooner)
I I I
L CaReoier )
=)

MSI: Processor P, Writes A = 2

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

17

L > W | { 1 ] [ 1]
S D S D C r)
I 4 3

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P; Reads A

" 2''W| { [ ] [ T 1]
€ D € D C P)
1 1 I

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers




MSI: Processor P, Reads A

Q 0 ©

G P) G Pl G P

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P; Reads A

Q 0 ©

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P; Reads A

w ) ] | el
S D S D (“Shooper |
[ I I

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P, Writes A = 3

QQ(@

(S D (S D ('S D
I I I

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P; Writes A = 3

Q 0 ©

o o o
31 3 I
(CaRtroer )
e | e
J

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P; Writes A = 3
Q © ©
o [ [a=3 W]

(S r} (S rl G rJ

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers



MSI: Processor P, Writes A = 3

Q 0 ©

€ r| ('S D (s D
I I I

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P, Reads A

@ @

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P, Reads A

[ ] L W |
S r) S r) ("Snooper )
L1 1 11

NC STATE UNIVERSITY

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P, Reads A

@ 0 ©

(S D (S D ('S

D

1 I

NC STATE UNIVERSITY

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P, Reads A

(“Snooper )

@ 0 ©

(“Snooper )

1 [

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

29

MSI: Processor P, Reads A

Q 0 ©

(S r} (S rl G

rJ

I I

I

NC STATE UNIVERSITY

CSC/ECE 506: Architecture of Parallel Computers




MSI: Processor P, Reads A

Q@ ©

€ r| ('S D (s D
I I I

NC STATE UNIVERSITY

31

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P; Reads A

sl | I—

CSnoomer) CSnooner) CSrooper)
I I I
Caraer)
|7=3]

NC STATE UNIVERSITY

32

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P; Reads A

Q 0 ©

S D S D C r)
[ I I

NC STATE UNIVERSITY

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P, Reads A

NC STATE UNIVERSITY

34

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P, Reads A

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

35

MSI: Processor P, Reads A

Q ©

Q@

i

(S r} (S rl G

rJ

I 1 I

NC STATE UNIVERSITY

CSC/ECE 506: Architecture of Parallel Computers




MSI: Processor P, Reads A

Q @ ©

L A L
C. P) C D C P
[ K 3 I
FI_
 Caraller )
(A=3]

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor Pg Reads A
@ 0 ©
A=T S "A=3S| A=T S|

I I I
Caraer)
|7=3]

NC STATE UNIVERSITY

38

CSC/ECE 506: Architecture of Parallel Computers

MSI Example: Rd/Wr to a single line

R1 S - - BusRd Mem
W1 M - - BusRdX* Mem
R3 S - ) BusRd/Flush | P1 cache
W3 | - M BusRdX* Mem

R1 S - S BusRd/Flush | P3 cache
R3 S - ) - Own Cache
R2 S S ) BusRd Mem

*or, BusUpgr (data from own cache)

NC STATE UNIVERSITY

39

CSC/ECE 506: Architecture of Parallel Computers

Notes on MSI Protocol

+ For M - |, BusRdX/Flush: why flush?

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Notes on MSI Protocol

* For M - |, BusRdX/Flush: why flush? Because it is a read with
intention to write, as opposed to write.

« Thus, there is a possibility for a read before the write is performed.

« In addition, the write could be to a different word in the line (so the
whole line needs to be flushed).

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Notes on MSI Protocol

« For M - |, BusRdX/Flush: why flush? Because it is a read with
intention to write, as opposed to write.

« Thus, there is a possibility for a read before the write is performed.

« In addition, the write could be to a different word in the line (so the
whole line needs to be flushed).

« In case of a write to a shared block:

+ Cache already has latest data; can use upgrade (BusUpgr) instead of
BusRdX

+ Replacement changes state of two blocks: outgoing and incoming
+ Flush has to modify both caches and main memory

Note: Coherence granularity is u (a single line). What happens
when all the reads go to word 0 on line u, but write by P3 goes
to word 1 on line u? False-sharing miss on the 2nd R1

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers



MSI: Coherence and SC

MESI (4-state) Invalidation Protocol

» Coherence:
« Write propagation:
« through invalidation, and flush on subsequent BusRds
+ Write serialization?
» Writes (BusRdX) that go to the bus appear in bus order (and handled
by snoopers in bus order!)
« Writes that do not go to the bus?

« Only happen when the line state is M, i.e. when | am the only
processor holding the line. Local writes are only visible to me,
so they are serialized.

» To enforce SC:
* Program order: enforced by following the bus transaction order
 All writes appear on the bus
« All local writes (within 1 processor) can follow program order
« Write completion: Occurs when write appears on bus
« Write atomicity: A read returns the latest value of a write. At that time,

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

43

the value is visible to all others (on a bus transaction, or on a local write).

* Here’s a problem with the MSI protocol:
« A{Rd, Wr} sequence causes two bus transactions
« BusRd (I - S) followed by BusRdX or BusUpgr (S > M)
« even when no one is sharing (e.g., serial program!)
« In general, coherence traffic from serial programs is unacceptable
+ To avoid this, add a fourth state, Exclusive:
« Invalid
+ Modified (dirty)
« Shared (two or more caches may have copies)
« Exclusive (only this cache has clean copy,
same value as in memory)
* How does the protocol decide whether | > E or | > S?
« Need to check whether someone else has a copy
« “Shared” signal on bus: wired-or line asserted in response to BusRd

Lecture 15 Outline

» MSI protocol
MESI protocol

» Dragon protocol
* Firefly protocol

Inval-

idate Lpdats

3-state | MSI Firefly

4-state | MESI | Dragon

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

44

Lower-Level Protocol Choice

» What transition should occur when a
BusRd is observed in state M?

— Should the state change to S or to I?

NC STATE UNIV CSC/ECE 506: Architecture of Parallel Computers

46

MESI: Processor-Initiated Transactions

PrRd/—

PrwWr/BusRdX

Fill in the last two

transitions here. PrRd/BusRd(~S)

‘ PrRd/BusRd(S)
PrRd/~

CSC/ECE 506: Architecture of Parallel Computers

MESI: Bus-Initiated Transactions

Flush’ means flush only if cache-
to-cache sharing is used; only the
cache responsible for supplying
the data will do a flush.

BusRd/—
BusRdX/—

BusRd/Flush”

CSC/ECE 506: Architecture of Parallel Computers

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers NC STATE UNIVERSITY



MESI State Transition Diagram

usRAXFlush

PAVIBUSRAX

PR
BLsRd §)

S
BusRAFiush

erRy
\BlsR(s)

* BusRd(S) means shared line asserted on BusRd
transaction

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MESI Visualization

Q 0 ©

CSnoomer) CSnooner) CSrooper)
I I I
Caroer)
=]

NC STATE UNIVERSITY

50

CSC/ECE 506: Architecture of Parallel Computers

& Processor P, Reads A

€ r) C r) € r}

NC STATE UNIVERSITY

CSC/ECE 506: Architecture of Parallel Computers

& Processor P, Reads A

@ 0 ©

C P C P G D
T T T
(Corroler )
=]

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

& Processor P, Reads A
Q@ 0 ©
A= E I I

3 ] ]
L CaReoier )
=)

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Processor P, Reads A

Q 0 ©

C D C D € P)
I I I
Controller
7=

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers



Processor P, Writes A = 2

© @

"A=7W]

C Pl G P) G Pl
i T T
Cantrolier }

dl

One less bus request
due to Exclusive state,

NC STATE UNIVERSITY

esp. for serial programs ¢

CSC/ECE 506: Architecture of Parallel Computers

Processor P, Writes A = 2

Q 0 ©

(Snooper )

NC STATE UNIVERSITY

56

CSnooner) CSrooper)
I I I
Caroer)
=]

CSC/ECE 506: Architecture of Parallel Computers

&

Processor P; Reads A

NC STATE UNIVERSITY

Q ©

S r) S r) € r}

CSC/ECE 506: Architecture of Parallel Computers

& Processor P; Reads A

Q@ 0 ©

L
C P C P G D
3 3 ]
(Corroler )
=]

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

& Processor P; Reads A

Q 0 ©

Srooper) CSrooper) Corooner)
] I T
L CaReoier )
=)

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Processor P; Reads A

Q 0 ©

€ D € D C
I I 1
Controller
7=2|

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers



Processor P; Reads A

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Processor P; Writes A= 3

Q@(@

[ [ [

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

& Processor P; Writes A= 3

Q 0 ©

G Pl G D Ll-ﬁ
11 1 |
oo
%=z

Note: BusUpgr used
instead of BusRdX

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

& Processor P; Writes A =3

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

& Processor P; Writes A= 3

I I I
QD
|7=2]

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

€ D € D C P)
I I I
Controller
7=7|

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers




Processor P, Reads A

& Processor P, Reads A

NC STATE UNIVERSITY

67

CSC/ECE 506: Architecture of Parallel Computers

Processor P, Reads A

CSnooner) CSnooner) CSrooper)
T I T
Caroer)
|7=2]

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

& Processor P, Reads A
Q@ 0 ©
= 0 [A=5TS|

S D S D C r)
1 I |

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

C P C P G D
T T T
(Corroler )

[7=3]

NC STATE UNIVERSITY

70

CSC/ECE 506: Architecture of Parallel Computers

& Processor P; Reads A

A= S I A=
Srooper) CSrooper) CSrooner)
I I I
L CaREoier )
|7=3]

NC STATE UNIVERSITY

71

CSC/ECE 506: Architecture of Parallel Computers

Processor P; Reads A

@@@‘)

€ D € D C P)
I I I

NC STATE UNIVERSITY

CSC/ECE 506: Architecture of Parallel Computers




Processor P; Reads A

Q@ ©

@

L L
G Pl S Pl ('S D
T T T
Coirotler )
[7=3]

NC STATE UNIVERSITY

73

CSC/ECE 506: Architecture of Parallel Computers

Processor P, Reads A

sl | I— A=
CSnoomer) CSnooner) CSrooper)
I I I
Caraer)
|7=3]

NC STATE UNIVERSITY

74

CSC/ECE 506: Architecture of Parallel Computers

& Processor P, Reads A

Q ©

Q@

L L
C D C D C r)
1 | 1
Controller )
7=3

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

& Processor P, Reads A

Q ©

Q@

L L
C P C P) C P)
I 1 | |
o)
A

Referred to as
cache-to-cache transfer |
in lllinois MESI protocol

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

% Processor Pg Reads A
@ © ©
A=TS| "A=3 S| "A=TS|

I I I
L CaREoier )
|7=3]

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

MESI Example (Cache-to-Cache Transfer)

R1 = - - BusRd Mem
W1 M - - - Own cache
R3 S - S BusRd/Flush P1 cache
W3 | - M BusRdX Mem
R1 S - S BusRd/Flush P3 cache
R3 S - S - Own cache
R2 s s s BusRd/Flush cP; c/:e3

* Data from memory if no cache-to-cache transfer, BusRd/ —

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers




Change from MSI (Cache-to-Cache Transfer)

R1 E - - BusRd Mem
W1 M - - - Own cache
R3 S - ) BusRd/Flush P1 cache
W3 | - M BusRdX Mem
R1 S - ) BusRd/Flush P3 cache
R3 S - ) - Own cache
R2 s s s BusRd/Flush CP;C/E’:

* Data from memory if no cache-to-cache transfer, BusRd/ —

NC STATE UNIVERSITY

79

CSC/ECE 506: Architecture of Parallel Computers

Change from MSI (Cache-to-Cache Transfer)

R1 E - - BusRd Mem
W1 M - - - Own cache
R3 S - ) BusRd/Flush P1 cache
W3 | - M BusRdX Mem
R1 S - ) BusRd/Flush P3 cache
R3 S - ) - Own cache
R2 s s s BusRd/Flush g’;c/f]’:

* Data from memory if no cache-to-cache transfer, BusRd/ —

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

o]
o

Change from MSI (Cache-to-Cache Transfer)

R1 E - - BusRd Mem
W1 M - - - Own cache
R3 S - S BusRd/Flush P1 cache
W3 | - M BusRdX Mem
R1 S - S BusRd/Flush P3 cache
R3 S - S - Own cache
R2 s s s BusRd/Flush’ CP;C/::

* Data from memory if no cache-to-cache transfer, BusRd/ —

NC STATE UNIVERSITY

81

CSC/ECE 506: Architecture of Parallel Computers

MESI Example (Cache-to-Cache Transfer+BusUpgr)

R1 = - - BusRd Mem
W1 M - - - Own cache
R3 S - S BusRd/Flush P1 cache
w3 | - M BusUpgr Own cache
R1 S - S BusRd/Flush P3 cache
R3 S - S - Own cache
R2 S s s BusRd/Flush’ g;é:g

* Data from memory if no cache-to-cache transfer, BusRd/ —

NC STATE UNIVERSITY

82

CSC/ECE 506: Architecture of Parallel Computers

MESI Example (Cache-to-Cache Transfer+BusUpgr)

R1 E - - BusRd Mem
W1 M - - - Own cache
R3 S - S BusRd/Flush P1 cache
w3 | - M BusUpgr Own cache
R1 S - S BusRd/Flush P3 cache
R3 S - S - Own cache
R2 S s S BusRd/Flush’ (:P;c/:ea

* Data from memory if no cache-to-cache transfer, BusRd/ —

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Lower-Level Protocol Choices

* Who supplies data on miss when not in M state: memory or
cache?
« Original, lllinois MESI: cache
« assumes cache is faster than memory (cache-to-cache transfer)
* Not necessarily true

» Adds complexity
* How does memory know it should supply data? (must wait for
caches)
« A selection algorithm is needed if multiple caches have valid data.

» Useful in a distributed-memory system
* May be cheaper to obtain from nearby cache than distant memory
» Especially when constructed out of SMP nodes (Stanford DASH)

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers



Lecture 15 Outline

» MSI protocol

* MESI protocol

* Dragon protocol
* Firefly protocol

Inval-

idate Ujpiksiiz

3-state | MSI Firefly

4-state | MESI | Dragon

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

85

Dragon Writeback Update Protocol

+ Four states
« Exclusive-clean (E): Memory and | have it
Shared clean (Sc): |, others, and maybe memory, but I'm not owner
Shared modified (Sm): | and others but not memory, and I'm the owner
+ Sm and Sc can coexist in different caches, with at most one Sm
Modified or dirty (M): | and, no one else

On replacement: Sc can silently drop, Sm has to flush
* Noinvalid state

+ Ifin cache, cannot be invalid

If not present in cache, can view as being in not-present or invalid state
New processor events: PrRdMiss, PriwrMiss

Introduced to specify actions when block not present in cache
New bus transaction: BusUpd

Broadcasts single word written on bus; updates other relevant caches

NC STATE UNIVERSITY

86

CSC/ECE 506: Architecture of Parallel Computers

Dragon: Processor-Initiated Transactions

Dragon: Bus-Initiated Transactions

BusRd/—
BusUpd/Update

BusRd/-
Sc

BusUpd/Update

BusRd/Flush O

BusRd/Flush

CSC/ECE 506: Architecture of Parallel Computers

Dragon State Transition Diagram

PrRd/—

PrRd/— BusUpd/Update

BusRd/—
PrRdMiss/

PrRaMiss/
BusRd(S) BusRd(S)
PrWr/BusUpd(S)
PAWr/
BusUpd/Update BusUpd(S)
PrWrMiss/
(BusRd(S); PrWrMiss/
BusUpd) BusRd(S)

PrRd/—
PrWr/BusUpd(S)

BusRd/Flush

PrWr/BusUpd(S)

NC STATE UNIVERSITY

89

CSC/ECE 506: Architecture of Parallel Computers

PrRdMiss/BusRd(~S) PrwWr/BusUpd(S) PrRdMiss/BusRd(S)

PrWr/BusUpd(~S)

PrwrMiss/
(BusRd(S);BusUpd)

rWrMiss/BusRd(~S)

Fill'in the last two
PrRd/- transitions here.
PrWr/BusUpd(S)

Prwr/—

¥ Dragon Visualization

NC STATE UNIVERSITY

87

CSC/ECE 506: Architecture of Parallel Computers

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Q 0 ©

r~
%
N
o
N
3

90




< Processor P, Reads A o Processor P, Reads A

e 99 @ 0 ©

€ D ('S D (s D (s F} (s D (s D
I I I I I I
———
Controter )
i

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

91 94

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

2 Processor P, Reads A #2  Pprocessor P, Writes A = 2

@ @

A=W
Peroerer] Peroerer] Peroorer) Pereorer) Pereorer ) Peroorer)
| 1 1 I I I
(Cantroler ) Canroller )
7= =]

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

2 Processor P, Reads A #2  Processor P, Writes A = 2
@ 0 ©

€ D € D C P)
I I I

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers




<

Processor P; Reads A

NC STATE UNIVERSITY

@Q(@

€ r| ('S D (s D
I I I

CSC/ECE 506: Architecture of Parallel Computers

72

Processor P; Reads A

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

98

Q 0 ©

CSnoomer) CSnooner) CSrooper)
T T I
Caroer)
=]

2

Processor P; Reads A

NC STATE UNIVERSITY

99

Q 0 ©

€ r) C r) & r)

CSC/ECE 506: Architecture of Parallel Computers

2 Processor P, Reads A

Q@ @

Q@

"A=7s:
C P C P G D
— : -
Cantroier )
7=

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

o Processor P, Reads A

Srooper) CSrooper) CSrooner)
I I I
QD
7=

NC STATE UNIVERSITY

101

CSC/ECE 506: Architecture of Parallel Computers

#  processor P, Writes A = 3

Q@ @

INC STATE UNIVERSITY

102

CSC/ECE 506: Architecture of Parallel Computers



Processor P; Writes A =3

Q 0 ©

L L
G P) G Pl G P
7] 3 I
Cntrorier
 E————— =
)

Note: BusUpdate instead of BusUpgr
(no invalidation is performed)

NC STATE UNIVERSITY

103

CSC/ECE 506: Architecture of Parallel Computers

#2  processor P, Writes A = 3

Q 0 ©

(Snooper ) (Snooper ) (“Snooper )

‘%’

?i
[P R =1

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

#  processor P, Writes A = 3

NC STATE UNIVERSITY

105

CSC/ECE 506: Architecture of Parallel Computers

2

Processor P, Reads A

@ @

A=35]

P o) Perooner)
I I I
 Controler )
7=

J

NC STATE UNIVERSITY

106

CSC/ECE 506: Architecture of Parallel Computers

2

Processor P, Reads A

@ @

ikl
Srooper) CSrooper) CSrooner)
I I I
L CaReoier )
=)
)

NC STATE UNIVERSITY

This is a miss in the
MESI and MSI protocols.

107

CSC/ECE 506: Architecture of Parallel Computers

72

Processor P, Reads A

Q 0 ©

L
€ D € D C P)
I I I
Controller
7=

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

108




2 Processor P, Reads A
@ ©

€ r| ('S D (s D
I I I

NC STATE UNIVERSITY

109

CSC/ECE 506: Architecture of Parallel Computers

o Processor P, Reads A

G@@)

CSnoomer) CSnooner)
I I I
Caroer)
=]

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

< Processor P, Reads A
@ © ©

S D S D C r)
[ I I

NC STATE UNIVERSITY

111

CSC/ECE 506: Architecture of Parallel Computers

o Processor P, Reads A

A=35] ] A=3'5)
C o) Perooner)
I I I
 Controler )
7=

NC STATE UNIVERSITY

112

CSC/ECE 506: Architecture of Parallel Computers

o Processor P, Reads A

Srooper) CSrooper) CSrooner)
3 I 3
L CaReoier )
=)

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

< Processor P, Reads A

TA=3 8| "A=3 S.|

Q@

[
'S P 'S P) C Pl
| kN I
o]
N

Note: Only the cache in state Sm is
responsible for cache-to-cache transfer

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers




< Processor P, Reads A o Dragon Example

@ 0 © [, [ s s e[ s e s [ onarem |

R1 = - - BusRd Mem
C ~ C ~ C > W1 M - - - Own cache
I I I R3 Sm = Sc | BusRd/Flush | P1 cache
SR W | S | = | sm | owpeitpa| omncache
Contratler R1 Sc - Sm - Own cache
= R3 Sc - Sm - Own cache
R2 Sc Sc Sm BusRd/Flush P3 cache

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

ﬂq P, Replaces A Lower-Level Protocol Choices

« Can shared-modified state be eliminated?
Q Q Q « If memory is updated too on BusUpd transactions (DEC Firefly)
A5

+ Dragon protocol doesn’t (assumes DRAM memory slow to update)

l

Should replacement of an Sc block be broadcast?
+ Would allow last copy to go to Exclusive state and not generate updates

[ [ [ - Replacement bus transaction isn't in critical path, but later update may be
F + Shouldn’t update local copy on write hit before controller gets bus
+ Can mess up serialization
« Coherence, consistency considerations much like write-through
7= case

« In general, there are many subtle race conditions in protocols.

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

2 P, Replaces A Lecture 15 Outline

Q Q Q * MSI protocol
: * MESI protocol
e 5 & + Dragon protocol

I I |

Firefly protocol

|

Ilnval- Update
Comvorer) it
[4=3] 3-state | MSI Firefly
P3 replaces X vs. MSI or MESI where 4-state | MESI | Dragon
Owner responsible write-back only when
for writing back to memory  the line is in M state

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers



A Three-State Update Protocol

» Whenever a bus update is generated, suppose
that main memory—as well as the caches—
updates its contents.

» Then which state don’t we need?

» What's the advantage, then, of having the fourth
state?

0
J

» The Firefly protocol, named after a
multiprocessor workstation developed
by DEC, is an example of such a protocol.

NC STATE UNIVERSITY

121

CSC/ECE 506: Architecture of Parallel Computers

75 Firefly State-Transition Diagram

CWMx Key:
CRM — CPU read miss
CWM — CPU write miss
V4 CWH — CPU write hit
R,

CWH BR — bus read
BW — bus write
A “\" following a transition means
SharedLine was asserted. An “x”
means it was not.

Processor-induced transitions ——
Bus-induced transitions -

CRMY, Read hits do not cause state
CWMY transitions and are not shown.

» Answer some questions about this diagram.

NC STATE UNIVERSITY

CSC/ECE 506: Architecture of Parallel Computers

122
v 3 Firefly Visualization
e e 05
I I I
oot
=)
123

3 Processor P, Reads A
cHl e 65
I I I
ot
7=]

NC STATE UNIVERSITY

CSC/ECE 506: Architecture of Parallel Computers

124
7 Processor P, Reads A
I | — [ —
("Snooper | ("Snooper ) (“Snooper |
| 1 1
Convoter)
G
125
o Processor P, Reads A
e e 05
1 I I
convorer)
(=]

126




2 Processor P, Reads A

NC STATE UNIVERSITY

127

CSC/ECE 506: Architecture of Parallel Computers

7 Processor P, Writes A = 2

| — |
(Snooper ) (Snooper ) (“Snooper )
I I I

NC STATE UNIVERSITY

128

CSC/ECE 506: Architecture of Parallel Computers

L Processor P, Writes A = 2
@ © ©

S D S D C r)
[ I I

NC STATE UNIVERSITY

129

CSC/ECE 506: Architecture of Parallel Computers

73

Processor P; Reads A

(s D (s F ) (s D
I I I
Controter )
i

NC STATE UNIVERSITY

130

CSC/ECE 506: Architecture of Parallel Computers

7P

Processor P; Reads A

Srooper) CSrooper) Corooner)
3 3 I
L CaReoier )
=)

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

131

g

Processor P; Reads A

NC STATE UNIVERSITY

132

CSC/ECE 506: Architecture of Parallel Computers




25 Processor P; Reads A

NC STATE UNIVERSITY

133

CSC/ECE 506: Architecture of Parallel Computers

7 Processor P, Reads A

Q ©

(Snooper )

Q@

(“Snooper )

[ [

I

NC STATE UNIVERSITY

134

CSC/ECE 506: Architecture of Parallel Computers

N Processor P, Writes A = 3

Q ©

S r) S r)

I I

NC STATE UNIVERSITY

135

CSC/ECE 506: Architecture of Parallel Computers

73

Processor P; Writes A =3

Q@ 0 ©

[ [
C D C D C D
11 1 |
 Cotrolier )
E———
)

Note: BusUpd

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

136

7P

Processor P; Writes A= 3

(“Snooper ] (“Snooper ]
| | 1
| Controller)
o |8
)

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

137

=

Processor P; Writes A= 3

NC STATE UNIVERSITY

138

CSC/ECE 506: Architecture of Parallel Computers




73 Processor P, Reads A 3 Processor P; Reads A

(@QQ QQ

A=
C D C D s D
I I I
(Corroler )
7=3]

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

139 142

75 Processor P, Reads A 7 Processor P, Reads A
3 A=3S| "A=3S| : [ "A=TS|
[ [ [ [ [ [
orroner
73]

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

140 143

25 Processor P, Reads A 7 Processor P, Reads A
@ © (@ @ © ©

I I I k3 | 1

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

141 144



&y Processor P, Reads A

Q ©

@

L A L
C Pl C D C P
I . I
o)
A

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

2 Processor P, Reads A
@ © ©
A=TS "A=3S| A=TS

I I I
Caraer)
|7=3]

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Firefly Example

R1 v - - BusRd Mem
W1 D - - - Own cache
R3 S - S BusRd/Flush P1 cache
w3 S - S BusUpd Own cache
R1 S - S - Own cache
R3 S - S - Own cache
R2 S S S BusRd/Flush | P1 Cache

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Firefly Example

R1 v - - BusRd Mem

W1 D - - - Own cache
R3 S - S BusRd/Flush P1 cache
w3 S - S BusUpd Own cache
R1 S - S - Own cache
R3 S - S - Own cache
R2 S S S BusRd/Flush | P1 Cache

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Assessing Protocol Tradeoffs

* In the next lecture, we will look at results of comparing
protocols by simulation.

* Methodology:
* Use simulator; default 1MB, 4-way cache, 64-byte block, 16
processors. Some runs use 64K cache.
« Focus on frequencies, not end performance for now
« transcends architectural details, but not what we're really
after
« Use idealized memory performance model to avoid changes
of reference interleaving across processors with machine
parameters
+ Cheap simulation: no need to model contention

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers



