

Lecture 19 Architecture of Parallel Computers 1

Relaxed Memory-Consistency Models

Review. Why are relaxed memory-consistency models needed?

How do relaxed MC models require programs to be changed?

guaranteed is often a fence instruction.

 The fence ensures that memory operations that are younger
are not issued until the older mem ops have globally performed.
The newer instruction must

o wait until all older writes have been posted on the bus (or
received InvAck);

o wait until all older reads have completed;

o flush the pipeline to avoid issuing younger mem ops early

 Programmers must insert fences.

What if amateur programmers perform their own synchronization, and
forget fences?

A continuum of consistency models

Sequential consistency is one view of what a programming model
should guarantee.

Let us introduce a way of diagramming consistency models.
Suppose that

memory is 0.

 Then processor 1 writes the value 1 to that word of memory.
Note that this is a remote write.

 Processor 2 then reads the word. But, being local, the read
occurs quickly, and the value 0 is returned.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

This situation can be diagrammed like this (the horizontal axis
represents time):

P1: W (x)1

P2: R (x)0

Depending upon how the program is written, it may or may not be
able to tolerate a situation like this.

But, in any case, the programmer must understand what can happen
when memory is accessed in a DSM system.

Sequential consistency

Sequential consistency: The result of any execution is the same as
if

 the memory operations of all processors were executed in
some sequential order, and

 the operations of each individual processor appear in this
sequence in the order specified by its program.

Sequential consistency does not mean that writes are instantly visible
throughout the system (it would be impossible to implement that
anyway).

The example below illustrates two sequentially consistent executions.

Note that a read from P2 is allowed to return an out-of-date value

P1: W (x)1 P1: W (x)1

P2: R (x)0 R (x)1 P2: R (x)1 R (x)1

From this we can see that running the same program twice in a row
in a system with sequential consistency may not give the same
results.

Lecture 19 Architecture of Parallel Computers 3

Causal consistency

The first step in weakening the consistency constraints is to
distinguish between events that are potentially causally connected
and those that are not.

Two events are causally related if one can influence the other.

P1: W (x)1

P2: R (x)1 W (y)2

Here, the write to x could influence the write to y, because

On the other hand, without the intervening read, the two writes would
not have been causally connected:

P1: W (x)1

P2: W (y)2

The following pairs of operations are potentially causally related:

 A read followed by a later write by the same processor.

 A write followed by a later read to the same location.

 The transitive closure of the above two types of pairs of
operations.

Operations that are not causally related are said to be concurrent.

Causal consistency: Writes that are potentially causally related
must be seen in the same order by all processors.

Concurrent writes may be seen in a different order by different
processors.

Here is a sequence of events that is allowed with a causally
consistent memory, but disallowed by a sequentially consistent
memory:

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

P1: W (x)1 W (x)3

P2: R (x)1 W (x)2

P3: R (x)1 R (x)3 R (x)2

P4: R (x)1 R (x)2 R (x)3

Why is this not allowed by sequential consistency?

Why is this allowed by causal consistency?

What is the violation of causal consistency in the sequence below?

P1: W (x)1

P2: R (x)1 W (x)2

P3: R (x)2 R (x)1

P4: R (x)1 R (x)2

Without the R (x)1 by P2 causally
consistent.

Implementing causal consistency requires the construction of a
dependency graph, showing which operations depend on which other
operations.

Processor consistency

Causal consistency requires that all processes see causally related
writes from all processors in the same order.

The next step is to relax this requirement, to require only that writes
from the same processor be seen in order. This gives processor
consistency.

Lecture 19 Architecture of Parallel Computers 5

Processor consistency: Writes performed by a single processor are
received by all other processors in the order in which they were issued.

Writes from different processors may be seen in a different order by
different processors.

Processor consistency would permit this sequence that we saw
violated causal consistency:

P1: W (x)1

P2: R (x)1 W (x)2

P3: R (x)2 R (x)1

P4: R (x)1 R (x)2

Another way of looking at this model is that all writes generated by
different processors are considered to be concurrent.

Note: Some definitions of processor consistency require cache
coherence too. Processor consistency without cache coherence is
called PRAM consistency.

Exercise: What is the strongest consistency model that each of the
following satisfy?

P1: W (x)1

P2: R (x)1 W (x)2

P3: R (x)1 R (x)2

P4: R (x)2 R (x)1

P1: W (y)1

P2: R (x)1 W (y)2

P3: R (y)1 R (y)2

P4: R (y)2 R (y)1

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6

P1: W (x)1

P2: R (x)1 W (y)2

P3: R (x)1 R (y)2

P4: R (y)2 R (x)1

Sometimes processor consistency can lead to counterintuitive results.

P1: P2:

a = 0;
 :
a = 1;
if (b == 0)
 kill(p2);

b = 0;
 :
b = 1;
if (a == 0)
 kill(p1);

At first glance, it seems that no more than one process should be
killed.

With processor consistency, however, it is possible for both to be
killed. Explain how.

What processor consistency guarantees

 SC ensures ordering of
o LD LD
o LD ST
o ST LD
o ST ST

 PC removes the ST LD constraint, with significant implications
for ILP:

o Values can be loaded into other caches, even
store to the same location in some write buffer.

o Loads do not wait for stores to , they
access the cache right away (without being speculative!).

o A load dependent on an older store (in the same
processor)
before it is stored).

 PC also removes write atomicity.

Lecture 19 Architecture of Parallel Computers 7

 How close is PC to

o Most of the time, very close (e.g., post-wait
synchronization works correctly)

o Major OSes are ported to PC with relative ease

 Cases that cause errors in PC usually are due to races that
also happen in SC.

o However, debugging races in PC is more difficult.

Weak ordering

Processor consistency is still stronger than necessary for many
programs, because it requires that writes originating in a single
processor be seen in order everywhere.

But it is not always necessary for other processors to see writes in
order or even to see all writes, for that matter.

Suppose a processor is in a tight loop in a critical section, reading
and writing variables.

process exits its critical section.

Load

Load

Store

Store

Load
Program
execution

This load
bypasses
2 stores

P1:
data =
2000;
flag = 1;

P2:
while (flag == 0) {};
print data;

P1:
flag1 = 1;
if (flag2 == 0)

P2:
flag2 = 1;
if (flag1 == 0)

PC fails to produce SC results, because PC does
not guarantee ordering betw. store & younger load

PC produces SC results, because
ordering between 2 stores is preserved.

Implications

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 8

Under processor consistency, the memory has no way of knowing
that other processe
propagate all writes to all other processors in the normal way.

To relax our consistency model further, we have to divide memory
operations into two classes and treat them differently.

 Accesses to synchronization variables are sequentially consistent.

 Accesses to other memory locations can be treated as concurrent.

This strategy is known as weak ordering.

during a critical section.

We can just wait until the process exits its critical section, and then

 make sure that the results are propagated throughout the
system, and

 stop other actions from taking place until this has happened.

Similarly, when we want to enter a critical section, we need to make
sure that all previous writes have finished.

These constraints yield the following definition:

Weak ordering: A memory system exhibits weak ordering iff

1. Accesses to synchronization variables are sequentially
consistent.

2. No access to a synchronization variable can be performed until
all previous writes have completed everywhere.

3. No data access (read or write) can be performed until all
previous accesses to synchronization variables have been
performed.

Thus, by doing a synchronization before reading shared data, a
process can be assured of getting the most recent values written by
other processes before their immediately preceding Ss.

Lecture 19 Architecture of Parallel Computers 9

Note that this model does not allow more than one critical section to
execute at a time, even if the critical sections involve disjoint sets of
variables.

This model puts a greater burden on the programmer, who must
decide which variables are synchronization variables.

Weak ordering says that memory does not have to be kept up to date
between synchronization operations.

This is similar to how a compiler can put variables in registers for

are written back.

If there were any possibility that another process would want to read
these variables, th

This shows that processes can live with out-of-date values, provided
that they know when to access them and when not to.

The following is a legal sequence under weak ordering. Can you
explain why?

P1: W (x)1 W (x)2 S

P2: R (x)2 R (x)1 S

P3: R (x)1 R (x)2 S

Why?

P1: W (x)1 W (x)2 S

P2: S R (x)1

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 10

Release consistency

Weak ordering does not distinguish between entry to critical section
and exit from it.

Thus, on both occasions, it has to take the actions appropriate to
both:

 making sure that all locally initiated writes have been
propagated to all other memories, and

 making sure that the local processor has seen all previous
writes anywhere in the system.

Load/Store
:

Load/Store

Sync

Load/Store
:

Load/Store

Sync

Load/Store
:

Load/Store

Synch may be implemented as a lock
acquire/release

Before a synch, all previous ops must finish.
Before any ld/st, all previous synch must finish.

Why safe? Typically within a critical section, we have
made sure that only one process is inside, thus safe
to reorder anything in the critical section.

Outside a critical section, we usually do not care
about the order of mem ops (we would have used
synchronization if we had cared).

How to know whether a particular ld/st serves as a
synchronization point?

 Assume all atomic instructions are
synchronization points

o fetch-and-op, test-and-set
 Assume all load linked (LL) and store conditional

(SC) are synchronization points

P1

P2

Lecture 19 Architecture of Parallel Computers 11

If the memory could tell the difference between entry and exit of a
critical section, it would only need to satisfy one of these conditions.

Release consistency provides two operations:

 acquire operations tell the memory system that a critical section
is about to be entered.

 release operations say a c. s. has just been exited.

It is possible to acquire or release a single synchronization variable,
so more than one critical section can be in progress at a time.

When an acquire occurs, the memory will make sure that all the local
copies of shared variables are brought up to date.

When a release is done, the shared variables that have been
changed are propagated out to the other processors.

But

 doing an acquire does not guarantee that locally made changes
will be propagated out immediately.

 doing a release does not necessarily import changes from other
processors.

Here is an example of a valid event sequence for release consistency
(A Q

P1: A (L) W (x)1 W (x)2 Q (L)

P2: A (L)R (x)2 Q (L)

P3: R (x)1

Note that since P3 has not done a synchronize, it does not
necessarily get the new value of x.

Release consistency: A system is release consistent if it obeys
these rules:

1. Before an ordinary access to a shared variable is performed, all
previous acquires done by the process must have completed.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 12

2. Before a release is allowed to be performed, all previous reads
and writes done by the process must have completed.

3. The acquire and release accesses must be processor
consistent.

If these conditions are met, and processes use acquire and release
properly, the results of an execution will be the same as on a
sequentially consistent memory.

Summary: Sequential consistency is possible, but costly. The model
can be relaxed in various ways.
Consistency models not using synchronization operations:

Type of
consistency

Description

Sequential All processes see all shared accesses in same
order.

Causal All processes see all causally related shared
accesses in the same order.

Processor All processes see writes from each processor in
the order they were initiated. Writes from different
processors may not be seen in the same order,
except that writes to the same location will be seen
in the same order everywhere.

Consistency models using synchronization operations:

Type of
consistency

Description

Weak Shared data can only be counted on to be
consistent after a synchronization is done.

Release Shared data are made consistent when a critical
region is exited.

Lecture 19 Architecture of Parallel Computers 13

The following diagram contrasts various forms of consistency.

Sequential
consistency

Processor
consistency

Weak
ordering

Release
consistency

R

W

R

R

W
:
:

R

R

W

{W, R}
:
:

{M, M}

SYNCH

{M, M}

SYNCH
:
:

{M, M}

ACQUIRE

{M, M}

RELEASE

 {M, M}

RELEASE

 RELEASE
 :

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 1

Scalable Multiprocessors

[§10.1] A scalable system is one in which resources can be added to
the system without reaching a hard limit.

What does scalability mean?

• Avoids inherent design limits on resources.
• Bandwidth increases with # of processors p.
• Latency does not.
• Cost increases slowly with p.

Why doesn’t a bus-based design scale?

 Physical constraints

 Protocol constraints

 Contention everywhere: bus, snooper, memory

Scalability and coherence

All of the cache-coherent systems we have talked about until now
have had a bus.

Not only does the bus guarantee serialization of transactions; it also
serves as a convenient broadcast mechanism to assure that each
transaction is propagated to all other processors’ caches.

How can cache coherence can be provided on a machine with
physically distributed memory and no globally snoopable
interconnect?

 To support a shared address space?

 To be able to satisfy a cache miss transparently from local or
remote memory?

This means data is replicated widely. How can it be kept coherent?

Lecture 20 Architecture of Parallel Computers 2

Scalable network

CA

P

$

Switch

M

Switch Switch

Scalable distributed memory machines consist of P-C-M nodes
connected by a network.

The communication assist interprets network transactions and forms
the interface between the processor and the network.

A coherent system must do these things.

 Provide a set of states, a state-transition diagram, and actions.

 Manage the coherence protocol.

(0) Determine when to invoke the coherence protocol

(a) Find a source of information about the state of this block
in other caches.

(b) Find out where the other copies are

(c) Communicate with those copies (invalidate/update)

(0) is done the same way on all systems

• The state of the line is maintained in the cache

• The protocol is invoked if an “access fault” occurs on the line.

The different approaches to scalable cache coherence are
distinguished by their approach to (a), (b), and (c).

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 3

Bus-based coherence

In a bus-based coherence scheme, all of (a), (b), and (c) are done
through broadcast on bus.

• The faulting processor sends out a “search.”

• Other processors respond to the search probe and take
necessary action.

We could do this in a scalable network too—broadcast to all
processors, and let them respond. Why don’t we?

Why not? On a scalable network, every fault leads to at least p
network transactions.

P
ro

to
co

l

 Interconnection

Bus Point-to-point

Snoopy Least scalable More scalable

Directory — Most scalable

Directory-based protocol

 Instead of broadcasting to find out who has the block, keep
track of copies in the directory.

 Invalidation requests must be sent (individually) to all sharers;
can you explain why this doesn’t render the protocol too slow?

 Used with distributed shared memory (DSM) multiprocessors

 Can scale to tens or hundreds of processors.

Lecture 20 Architecture of Parallel Computers 4

How to map memory on a DSM?

 Block interleaving?

o distributes data
around

o hard to exploit
spatial locality

 No interleaving?

[pfr = page frame]

Of course, the OS
is responsible for
placing pages in
page frames.

 The OS must be involved in deciding where to allocate a page.

Answer these questions …

 How are pages typically replaced on a uniprocessor?

 Why is the decision different on a multiprocessor?

 Why is “first touch” a sensible policy for many situations?

 Why is “first touch” grossly suboptimal for many parallel
algorithms?

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 5

 What is an alternative allocation policy that often works well?

Handling misses in directory-based coherence

The basic idea of a directory-based approach is this.

• Every memory block has associated directory information;
it keeps track of copies of cached blocks and their states.

• On a miss, it finds the directory entry, looks it up, and
communicates only with the nodes that have copies (if
necessary).

In scalable networks, communication with the directory and with
copies occurs through network transactions.

Let us assume that the directory is distributed, with each node
holding directory information for the blocks it contains.

This node is called the home node for these blocks.

What happens on a read miss?

Lecture 20 Architecture of Parallel Computers 6

P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2.

3.

4a.

4b.

Requestor

Node with
dirty copy

Directory node
for block

The requesting node
sends a request
transaction over the
network to the home
node.

The home node
responds with the
identity of the
owner—the node that
currently holds a valid
copy of the block.

The requesting node
then gets the data
from the owner, and
revises the directory
entry accordingly.

On a write
miss, the
directory
identifies
copies of
the block,
and invali-
dation or
update
messages
may be
sent to the
copies.

P

A M/D

C
P

A M/D

C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1.

2.

P

A M/D

C

Inval. req.
to sharer

Inval. ack Inval. ack

3a. 3b.

4a. 4b.

Requestor

Directory node

Sharer Sharer

Now, see if you can tell how many directory messages are needed in
each of several cases.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 7

One major difference from bus-based schemes is that we can’t
assume that a write has

What information will be held in the directory?

• There will be a dirty bit telling if the block is dirty in some cache.

• Not all state information (MESI, etc.) needs to be kept in the
directory, only enough to determine what actions to take.

 Sometimes the state information in the directory will be out of
date. Why?

 So, sometimes a directory will send a message to the cache
that is no longer correct when it is received.

Flat vs. hierarchical directories

When a miss occurs, how do we find the directory information?
There are two main alternatives.

 A flat directory scheme. Directory information is in a fixed
place, usually at the home (where the memory is located).

o On a miss, a transaction is sent to the home node.

 A hierarchical directory scheme. Directory information is
organized as a tree, with the processing nodes at the leaves.

o Each node keeps track of which, if any, of its (immediate)
children have a copy of the block.

o When a miss occurs, the directory information is found by
traversing up the hierarchy level until the block is found
(in the “appropriate state”).

o The state indicates, e.g., whether copies of the block exist
outside the subtree of this directory.

Lecture 20 Architecture of Parallel Computers 8

How do flat schemes store information about copies?

 Memory-based schemes store the information about all cached
copies at the home node of the block. E.g., Dash, Alewife, SGI
Origin.

 Cache-based schemes distribute information about copies among
the copies themselves. E.g., IEEE SCI, Sequent NUMA-Q.

o The home contains a pointer to one cached copy of the
block.

o Each copy contains the identity of the next node that has
a copy of the block.

This means that the copies are located through network transactions.

P

Cache

P

Cache

P

Cache

Main Memory
(Home)

Node 0 Node 1 Node 2

Centralized Distributed

Hierarchical Flat

Memory-based Cache-based

Directory Schemes

How to find source of
directory information

How to locate copies

DASH, Origin
Alewife, HAL

SCI,
Sequent NUMA-Q

bad for scalability (why not
bus?)
mostly early machines

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 9

When do hierarchical schemes outperform flat schemes?

Why might hierarchical schemes be slower than flat schemes?

Summary

Flat Schemes:

• Issue (a): finding source of directory data
• go to home, based on address

• Issue (b): finding out where the copies are
• memory-based: all info is in directory at home
• cache-based: home has pointer to first element of distributed

linked list

• Issue (c): communicating with those copies
• memory-based: point-to-point messages (perhaps coarser

on overflow)
– can be multicast or overlapped

• cache-based: part of point-to-point linked list traversal to
find them

– serialized

Hierarchical Schemes:
• all three issues through sending messages up and down

tree
• no single explict list of sharers
• only direct communication is between parents and children

Distributing the directory

The directory needs to be distributed, but how many “pieces” should
there be, and where should they be located?

Classical DSM

P-C-M nodes (p. 2, above) are connected to form a distributed
shared memory system.

Lecture 20 Architecture of Parallel Computers 10

LL cache miss request to directory determined by PFA of block

Directory is located at the same node as the block. Why?

Multicore with coherent LLCs

Directory entries point to cache blocks, not main memory!

If the LLC misses, block can be fetched from another cache.

If it’s not cached, then it needs to go through a memory controller
(MC) to fetch it from main memory.

The number of memory controllers is limited by pin count, which may
cause bottlenecks.

Multicore with coherent non-LLCs

In the diagram below,

 the L3 cache is “physically distributed but logically shared,” and

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 11

 the L2 caches are kept coherent.

L2 miss L3 directory searched, block retrieved from L3 or memory

In this case, the directory can be merged with the L3 tag array!

Not only does the L3 tag tell which block the L3 line holds, but also

Benefit: Lower miss latency for L2 and L3.

Drawback: Directory can hold only as many entries as there are lines
in the L3.

So the L3 cache has to include all blocks cached in the L2. Why?

Lecture 21 Architecture of Parallel Computers 1

Basic DSM Cache Coherence

[§10.3] Let us start off by considering a full bit-vector approach.

For each block of memory, assuming there are k processors, it
maintains at the home node of the block …

 k presence bits p[..]
 1 dirty bit D

Cache state is represented the same way as in bus-based designs
(MSI, MESI, etc.).

 On a read by processor i, the home node reacts this way:

 If (D == 0) { supply data; p[i] = 1; }

 else { send intervention to owner; update home; D = 0;
p[i] = 1; supply data to i;}

 On a write by processor i; tell how the home reacts:

 On a write by processor i; tell how the home reacts:

o if (D == 0) { ; D = 1; p[i]=1;
supply data to node i; }

o else { ; p[owner] = 0;
p[i] = 1 ; supply data to i;}

• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

On the replacement of a dirty block by node i, the data is written back
to memory and the directory is updated to turn off the dirty bit and p[i].

On the replacement of a shared block, the directory may or may not
be updated.

How does a directory help? It keeps track of which nodes have
copies of a block, eliminating the need for .

Would directories be valuable if most data were shared by most of
the nodes in the system?

Fortunately, the number of valid copies of data on most writes is
small.

The attached animation uses the MESI protocol, with 3 block states
in main memory:

 EM (exclusive or modified)
 S (shared)
 U (unowned)

 Network transactions for coherence

o Read: read request

o ReadX: read exclusive (or write) request

o Upgr: upgrade request

o ReplyD: home replies with data to requestor

o Reply: home replies to requestor with IDs of sharers

o Inv: home asks sharer to invalidate

o WB+Inv: home asks owner to flush and invalidate
o WB+Int: home asks owner to flush and change to S

o Flush: owner flushes data to home + requestor

o InvAck: sharer/owner acks an invalidation msg

o Flush+InvAck: Flush, piggybacking an InvAck message

Lecture 21 Architecture of Parallel Computers 3

 Notation

o Transaction (Source Destination)

o H = Home node

The following example is used in the animation:

Proc
action

P1
state

P2
state

P3
state

Dir state
@home Network messages

of
hops

R1 E – – EM, 100
Read (P1 H),
ReplyD (H P1)

2

W1 M – – EM, 100 — 0

R3 S – S S, 101
Read (P3 H),
WB+Int (H P1),
Flush (P1 H, P3)

3

W3 I – M EM, 001

Upgr (P3 H),
Reply (H P3) //
Inv (H P1),
InvAck(P1 P3)

3

R1 S – S S, 101
Read (P1 H),
WB+Int (H P3),
Flush (P3 H, P1)

3

R3 S – S S, 101 — 0

R2 S S S S, 111
Read (P2 H),
ReplyD (H P2)

2

Scaling with number of processors

In order for directory schemes to be practical, they must scale
gracefully.

• Scaling of memory and directory bandwidth

 Centralized directory is bandwidth bottleneck, just like
centralized memory.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

 How can we maintain directory information in a
distributed way?

• Scaling of performance characteristics

 traffic: # of network transactions each time protocol is
invoked

 latency: # of network transactions in critical path each
time

• Scaling of directory storage requirements

 Number of presence bits needed grows as the number
of processors.

 E.g., 64-byte block size and 1024 processors. How
many bits in block, vs. # of bits in directory?

Directory organization affects all of these issues.

Organizing a memory-based directory scheme

All info about copies is colocated with
the block itself at the home

This works just like a centralized
scheme, except that it is distributed.

Scaling of performance characteristics

• Traffic on a write is proportional
to number of sharers.

• Latency? Can issue invalidations
in parallel.

P

M

Scaling of storage overhead? Assume representation is a full bit-
vector.

Optimizations for full bit-vector schemes
• Increase (1) size (reduces storage overhead

proportionally).
• Use multicore nodes (one bit per multicore node, not per

processor)

Lecture 21 Architecture of Parallel Computers 5

• still scales as pm, but only a problem for very large
machines

– 256 procs, 4 per chip, 128B line: (2) % o’head

p term
• Observation: most blocks are cached by only few nodes
• Instead of keeping a bit per node, make entry contain a few

 (3) .
If p = 1024, 10-bit can use 100 and
still save space.

• Sharing patterns indicate a few pointers should suffice (five
or so).

• We also need an overflow strategy for when there are more
sharers than pointers.

m term.

• Observation: number of memory blocks >> number of cache
lines.

• Thus, most blocks will not be cached at any particular time;
therefore, most directory entries are useless at any given
time
• organize directory as a cache, rather than having one

entry per memory block (key is (4) , value is (5))

Organizing a cache-based directory scheme.

In a cache-based scheme, the home node only holds a pointer to the
rest of the directory information.

The copies are linked together via a distributed list that weaves
through caches.

Each cache tag has a pointer that points to the next cache with a
copy.

• On a read, a processor adds itself to the head of the list
(communication needed).

• On a write, it makes itself the head node on the list, then
propagates a chain of invalidations down the list.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6

 Each invalidation must be acknowledged.

• On a write-back, the node must delete itself from the list (and
therefore communicate with the nodes before and after it).

Disadvantages: All operations require communicating with at least
three nodes (node that is being operated on, previous node, and next
node).

Write latency is proportional to number of sharers.

Synchronization is needed

Advantages: Directory overhead is small.

Work of performing invalidations can be distributed among sharers.

The IEEE Scalable Coherent Interface has formalized protocols for
handling cache-based directory schemes.

The SSCI protocol

 SCI (Scalable Coherence Interface) protocol

o IEEE standard, ratified in 1993

o 7 state bits, 29 stable states + many pending states

 For illustration we will use Simple SCI (SSCI)

o Retains similarity with full-bit vector protocol:

 MESI states in the cache
 U, S, EM states in the memory directory
 Replaces the presence bits with a pointer

o Similar features to SCI

 Overall protocol operation
 Doubly linked list

o Many possible race conditions, which are mostly ignored
in the illustration

Lecture 21 Architecture of Parallel Computers 7

 Additional coherence network transactions (in addition to those
used in full bit-vector approach):

o WB+Int+UpdPtr

o UpdPtr: update next/prev/head pointers

Here is the example used in the animation.

Proc
action

P1
state

P2
state

P3
state

Dir
state

@home
Network message

of
hops

R1 E,0,0 – – EM, 1
Read (P1 H),
ReplyD (H P1)

2

W1 M,0,0 – – EM, 1 — 0

R3 S,3,0 – S,0,1 S, 3

Read (P3 H),
Reply (H P3),
WB+Int+UpdPtr (P3 P1),
Flush (P1 H, P3)

4

W3 I,3,0 – M,0,0 EM, 3
Upgr (P3 H) //
Inv (P3 P1)
InvAck(P1 P3)

2

R1 S,0,3 – S,1,0 S, 1

Read (P1 H),
Reply (H P1),
WB+Int+UpdPtr (P1 P3),
Flush (P3 H, P1)

4

R3 S,0,3 – S,1,0 S, 1 — 0

R2 S,2,3 S,0,1 S,1,0 S, 2
Read (P2 H),
ReplyD/ID (H P2),
UpdPtr (P2 P1)

3

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector Visualization – Start State

1

Start state. All caches empty
and main memory has A = 1 in
state U. Bit vector is 000.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 U 000
Main memoryMain memory

Directory

Edited by Samuel Christie and Amey Deshpande

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P1 Reads A

2

Processor P1 attempts to
read A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 U 000
Main memoryMain memory

Directory

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P1 Reads A

3

P1’s cache sends a Read
request to the home
directory. BV is set to 100.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P1 Reads A

4

Directory replies with value
of A and the state of A in
P1’s cache is set to E.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

Main memoryMain memory

Directory

A = 1 E

AA = 1 EM 100

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P1 Reads A

5

Processor P1’s read
completes.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

A = 1 E

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P1 Writes A

6

Processor P1 attempts to write
A=2 in its cache. Value is
modified and state is set to M.

P1

CacheCache
A = 2 M

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Wr A, #2Wr A, #2

CSC/ECE 506: Architecture of Parallel Computers

7

Processor P1 completes
writing A=2 to its cache.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

A = 2 M

Full Bit-Vector: Processor P1 Writes A

CSC/ECE 506: Architecture of Parallel Computers

8

Processor P3 attempts to
read A from its cache,
misses.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd &ARd &A
P3P3 ReadRead
DirDir WB+INTWB+INT
P1P1 FlushFlush

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

A = 2 M

Full Bit-Vector: Processor P3 Reads A

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P3 Reads A

9

P3’s cache sends Read
request to home directory.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd &ARd &A
P3P3 ReadRead
DirDir WB+INTWB+INT
P1P1 FlushFlush

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

A = 2 M

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P3 Reads A

10

Directory sends owning
cache a WB+Int. Owner P1
changes state to S.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd &ARd &A
P3P3 Read Read
DirDir WB+IntWB+Int
P1P1 FlushFlush

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

A = 2A = 2 S

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P3 Reads A

11

P1 flushes the block. Directory
and P3 update the block and
set state = S. BV is set to 101.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd &ARd &A
P3P3 Read Read
DirDir WB+INTWB+INT
P1P1 FlushFlush

P1

CacheCache

P2

CacheCache

P3

CacheCache
A=2 S

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 101
Main memoryMain memory

Directory

A = 2A = 2 S

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P3 Reads A

12

Processor P3 completes
read operation from its
cache.

P1

CacheCache
A = 2 S

P2

CacheCache

P3

CacheCache
A = 2 S

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 101
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

CSC/ECE 506: Architecture of Parallel Computers

InvAckInvAckP1P1

Full Bit-Vector: Processor P3 Writes A

13

Processor P3 attempts to
write A in its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache
A = 2 S

P2

CacheCache

P3

CacheCache
A = 2 S

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 101
Main memoryMain memory

Directory

CSC/ECE 506: Architecture of Parallel Computers

P1P1 InvAckInvAck
14

P3 sends Upgr request to the
directory. BV is set to 001, as
P3 becomes the owner.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache
A = 2 S

P2

CacheCache

P3

CacheCache
A = 2 S

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 EM 001
Main memoryMain memory

Directory

Full Bit-Vector: Processor P3 Writes A

CSC/ECE 506: Architecture of Parallel Computers

P1P1 InvAckInvAck
15

Directory sends Inv to P1
and Reply to P3.
P1 invalidates block.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache
A = 2 S

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

Full Bit-Vector: Processor P3 Writes A

CSC/ECE 506: Architecture of Parallel Computers

P1P1 InvAckInvAck
16

Processor P1 sends InvAck
and P3 proceeds with the
write, becomes owner.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache
A = 3 M

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

Full Bit-Vector: Processor P3 Writes A

CSC/ECE 506: Architecture of Parallel Computers

17

Processor P3 completes
writing A=3 to its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

A = 3 M

Full Bit-Vector: Processor P3 Writes A

CSC/ECE 506: Architecture of Parallel Computers

P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

Full Bit-Vector: Processor P1 Reads A

18

Processor P1 attempts to
read A from its cache,
misses.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir WB+INTWB+INT
P3P3 FlushFlush

A = 3 M

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P1 Reads A

19

P1’s cache sends Read
request to home directory.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir WB+INTWB+INT
P3P3 FlushFlush

P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

A = 3 M

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P1 Reads A

20

Directory sends WB+Int to
the owner cache. The owner
is downgraded to state S.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir WB+IntWB+Int
P3P3 FlushFlush

P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

A = 3 S

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P1 Reads A

21

P3 flushes the block to the dir-
ectory and P1’s cache. State
is set to S. BV is set to 101.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir WB+INTWB+INT
P3P3 FlushFlush

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P1 Reads A

22

Processor P1 completes
reading A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P3 Reads A

23

Processor P3 attempts to
read A from its cache, hits.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd &ARd &A
P3P3 returns datareturns data

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P3 Reads A

24

P3’s cache returns the value
of A immediately.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd &ARd &A
P3P3 returns datareturns data

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P3 Reads A

25

Processor P1 completes
reading A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P2 Reads A

26

Processor P2 attempts to
read A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P2P2 Rd &ARd &A
P2P2 ReadRead
DirDir ReplyDReplyD

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P2 Reads A

27

P2’s cache sends a Read
request to its directory.
BV is set to 111.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P2P2 Rd &ARd &A
P2P2 ReadRead
DirDir ReplyDReplyD

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S

A = 3 S

111

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P2 Reads A

28

Directory returns the block
and state with ReplyD.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P2P2 Rd &ARd &A
P2P2 ReadRead
DirDir ReplyDReplyD

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 111

A = 3 SA = 3 S

CSC/ECE 506: Architecture of Parallel Computers

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 111

A = 3 S

Full Bit-Vector: Processor P2 Reads A

29

Processor P2 finishes Read
operation.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

A = 3 S

CSC/ECE 506: Architecture of Parallel Computers

SSCI Visualization – Start State

30

Start state. All caches empty
and main memory has A = 1 in
state U.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 U 0
Main memoryMain memory

Directory

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P1 Reads A

31

Processor P1 attempts to
read A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 U 0
Main memoryMain memory

Directory

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P1 Reads A

32

P1’s cache sends a Read
request to the home
directory.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P1 Reads A

33

Directory replies with value of A
and the state of A in P1’s cache
is set to E. The cache line con-
tains fields state, prev, and next

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

Main memoryMain memory

Directory

A = 1
E,0,0

AA = 1 EM 1

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P1 Reads A

34

Processor P1’s read
completes.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

A = 1
E,0,0

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P1 Writes A

35

Processor P1 attempts to write
A=2 in its cache. Block is
modified and state is set to M.

P1

CacheCache
A = 2
M,0,0

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Wr A, #2Wr A, #2

CSC/ECE 506: Architecture of Parallel Computers

36

Processor P1 completes
writing A=2 to its cache.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

A = 2
M,0,0

SSCI: Processor P1 Writes A

CSC/ECE 506: Architecture of Parallel Computers

37

Processor P3 attempts to
read A from its cache,
misses.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd &ARd &A
P3P3 ReadRead

P3P3 WB+INT+UpdPtrWB+INT+UpdPtr
P1P1 FlushFlush

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

SSCI: Processor P3 Reads A

DirDir ReplyReply

A = 2
M,0,0

CSC/ECE 506: Architecture of Parallel Computers

P3P3 Rd &ARd &A

SSCI: Processor P3 Reads A

38

P3 cache sends Read
request to home directory.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

P3P3 WB+INT+UpdPtrWB+INT+UpdPtr
P1P1 FlushFlush

DirDir ReplyReply
P3P3 ReadRead

A = 2
M,0,0

CSC/ECE 506: Architecture of Parallel Computers

P3P3 ReadRead
P3P3 Rd &ARd &A

SSCI: Processor P3 Reads A

39

Directory sends Reply to P3.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

P3P3 WB+INT+UpdPtrWB+INT+UpdPtr
P1P1 FlushFlush

DirDir ReplyReply

A = 2
M,0,0

CSC/ECE 506: Architecture of Parallel Computers

DirDir ReplyReply

SSCI: Processor P3 Reads A

40

P3 sends owning cache a
WB+Int+UpdPtr.
Owner P1 changes state to
S, with prev pointer to P3

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

A = 2
S,3,0

P3P3 Rd &ARd &A
P3P3 ReadRead

P1P1 FlushFlush
P3P3 WB+Int+UpdPtrWB+Int+UpdPtr

CSC/ECE 506: Architecture of Parallel Computers

P3P3 WB+INT+UpdPtrWB+INT+UpdPtr

SSCI: Processor P3 Reads A

41

P1 flushes the block.
Directory state changes to
S,3 and P3’s state changes
to S with next pointing to P1

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache
A=2

S,0,1

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 3
Main memoryMain memory

Directory

A = 2
S,3,0

DirDir ReplyReply

P3P3 Rd &ARd &A
P3P3 ReadRead

P1P1 FlushFlush

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P3 Reads A

42

Processor P3 completes
read operation from its
cache.

P1

CacheCache
A = 2
S,3,0

P2

CacheCache

P3

CacheCache
A = 2
S,0,1

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 3
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

CSC/ECE 506: Architecture of Parallel Computers

InvAckInvAckP1P1

SSCI: Processor P3 Writes A

43

Processor P3 attempts to
write A, which is in its
cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 3
Main memoryMain memory

Directory

A = 2
S,3,0

A = 2
S,0,1

CSC/ECE 506: Architecture of Parallel Computers

P1P1 InvAckInvAck
44

Processor P3 sends Upgr
request to the directory.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 EM 3
Main memoryMain memory

Directory

SSCI: Processor P3 Writes A

A = 2
S,3,0

A = 2
S,0,1

CSC/ECE 506: Architecture of Parallel Computers

P1P1 InvAckInvAck
45

Directory sends Inv to P1
and Reply to P3.
P1 invalidates block.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache

I,3,0

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

SSCI: Processor P3 Writes A

A = 2 A = 2
S,0,1

CSC/ECE 506: Architecture of Parallel Computers

P1P1 InvAckInvAck
46

Processor P1 sends InvAck
and P3 proceeds with the
write, becomes owner.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache
A = 2
I,3,0

P2

CacheCache

P3

CacheCache
A = 3
M,0,0

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

SSCI: Processor P3 Writes A

CSC/ECE 506: Architecture of Parallel Computers

47

Processor P3 completes
writing A=3 to its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

A = 3
M,0,0

SSCI: Processor P3 Writes A

A = 2
I,3,0

CSC/ECE 506: Architecture of Parallel Computers

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

SSCI: Processor P1 Reads A

48

Processor P1 attempts to
read A from its cache,
misses.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead

P1P1 WB+INT+UpdPtrWB+INT+UpdPtr
P3P3 FlushFlush

DirDir ReplyReply

A = 3
M,0,0

A = 2
I,3,0

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P1 Reads A

49

P1 cache sends Read
request to home directory.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

P1P1 Rd &ARd &A

P1P1 WB+INT+UpdPtrWB+INT+UpdPtr
P3P3 FlushFlush

DirDir ReplyReply
P1P1 ReadRead

A = 3
M,0,0

A = 2
I,3,0

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P1 Reads A

50

Directory sends Reply to P1.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

P1P1 Rd &ARd &A
P1P1 ReadRead

P1P1 WB+INT+UpdPtrWB+INT+UpdPtr
P3P3 FlushFlush

DirDir ReplyReply

A = 3
M,0,0

A = 2
I,3,0

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P1 Reads A

51

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

S,1,0

P1P1 Rd &ARd &A
P1P1 ReadRead

P3P3 FlushFlush

DirDir ReplyReply
P1P1 WB+INT+UpdPtrWB+INT+UpdPtr

P1 sends WB+Int+UpdPtr to
the owner cache.
The owner is downgraded
to state S with prev set to P1

A = 3A = 2
I,3,0

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P1 Reads A

52

Processor P3 flushes the
block to the directory and
P1’s cache. State is set to
S with next pointer to P3

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache
A = 3
S,0,3

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,1,0

P1P1 Rd &ARd &A
P1P1 ReadRead

P1P1 WB+INT+UpdPtrWB+INT+UpdPtr
DirDir ReplyReply

P3P3 FlushFlush

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P1 Reads A

53

Processor P1 completes
reading A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache
A = 3
S,0,3

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,1,0

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P3 Reads A

54

Processor P3 attempts to
read A from its cache, hits.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd &ARd &A
P3P3 returns datareturns data

P1

CacheCache
A = 3
S,0,3

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,1,0

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P3 Reads A

55

P3’s cache returns the value
of A immediately.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd &ARd &A
P3P3 returns datareturns data

P1

CacheCache
A = 3
S,0,3

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,1,0

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P3 Reads A

56

Processor P1 completes
reading A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,0,3

A = 3
S,1,0

CSC/ECE 506: Architecture of Parallel Computers

DirDir ReplyD/IDReplyD/ID

SSCI: Processor P2 Reads A

57

Processor P2 attempts to
read A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P2P2 Rd &ARd &A
P2P2 ReadRead

P2P2 UpdPtrUpdPtr

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,0,3

A = 3
S,1,0

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P2 Reads A

58

P2’s cache sends a Read
request to its directory. Head
in directory is updated.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 2

DirDir ReplyD/IDReplyD/ID

P2P2 Rd &ARd &A

P2P2 UpdPtrUpdPtr

P2P2 ReadRead

A = 3
S,0,3

A = 3
S,1,0

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P2 Reads A

59

Directory returns the block
and state with ReplyD/ID.
P2’s state becomes S with
next pointing to P1.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 2

A = 3
S,0,1

P2P2 Rd &ARd &A
P2P2 ReadRead

P2P2 UpdPtrUpdPtr
DirDir ReplyD/IDReplyD/ID

A = 3
S,0,3

A = 3
S,1,0

CSC/ECE 506: Architecture of Parallel Computers

SSCI: Processor P2 Reads A

60

P2 sends UpdPtr to P1.
P1 changes Next pointer to
point to P2 .

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 2

A = 3
S,1,0

A = 3
S,0,1

A = 3
S,2,3

DirDir ReplyD/IDReplyD/ID

P2P2 Rd &ARd &A
P2P2 ReadRead

P2P2 UpdPtrUpdPtr

CSC/ECE 506: Architecture of Parallel Computers

P1

CacheCache
A = 3
S,2,3

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 2

SSCI: Processor P2 Reads A

61

Processor P2 finishes Read
operation.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

A = 3
S,0,1

A = 3
S,1,0

Lecture 22 Architecture of Parallel Computers 1

Scalable shared-memory multiprocessing and the Silicon Graphics S2MP
architecture1 (Dan Lenoski): [20a] Today I'd like to discuss scalable shared-
memory multiprocessing, and the S2MP architecture, which is at the heart of
SGI's latest multiprocessor.

Shared-memory multiprocessors, or SMPs, are the most popular form of
multiprocessing today, because they can handle both parallel and throughput
workloads.

They also offer powerful central resources, such as large memories and fast
secondary storage, that are sharable by a number of processors.

To date, the drawback of these systems has been their limited scalability and
high entry cost.

This talk introduces a new class of computer, the scalable shared-memory
multiprocessor, which removes the drawbacks of traditional SMP systems.

Here is an outline of the talk.

 This introduces the scalable SMP, or SSMP.

II. Scaling the SMP model. This focuses on a particular SSMP, the Silicon
Graphics Origin architecture and its S2MP memory architecture.

IV. Design issues in Origin.
design tradeoffs.

V. Conclusion.

processors available on the market today.

 Message-passing (MPP), or massively parallel architectures.
 Cluster of workstations.
 Shared memory (SMP).
 Parallel vector (PVP).

1Video © 1996, University Video Communications. This video is available from University Video
Communications, http://www.uvc.com.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 2

MPP architecture

Here is the structure of a message-passing, or SMP design, also referred to as a
distributed memory system. It consists of a collection of CPU/memory nodes
that are connected by a high-speed interconnection network.

The structure of the individual nodes is similar to a standalone
computer, except that the individual nodes are usually somewhat
smaller, and most are not connected directly to I/O devices.
Generally, the packaging is geared to a large processor count.

CM-5, and the Cray T3D and T3E.

The strength of MPP systems lies in their scalability. The fact that the nodes are
small, and are connected by a high-speed interconnection network allows these
systems to grow to hundreds or thousands of processors.

The drawback is that programming these systems involves restructuring
applications into a message-passing style, so programmers have to rewrite their
application to explicitly manage all communication.

In addition, performance often suffers, since the overhead of passing a message
is tens to hundreds of µsec., which is tens to thousands of instructions on a
modern microprocessor.

The performance and programming overheads have limited the use of these
machines to a small user base that can justify the effort of recoding their
applications in return for the high aggregate computing power of a large MPP.

Lecture 22 Architecture of Parallel Computers 3

Cluster architecture

Clusters address the volume issues of MPPs by replacing the integrated MPP
node with standard workstation or SMP nodes. Some cluster systems are the

arrays. These systems are popular because they can leverage the volume of the
individual nodes to hit better price/performance points.

The structure of these machines differs from MPPs in the sense that the
interconnection network connects to the I/O subsystem instead of being
integrated into the memory bus.

Physically these machines are generally not as tightly packaged as an MPP
machine, since the nodes have I/O controllers, disks, etc. Unfortunately the fact
that they are less integrated implies that the overhead of communicating
between the nodes is higher than in an MPP system. Of course, they suffer from
the same programming and message-passing overheads as MPP systems.

SMP architecture

The next class of system, the shared-memory or symmetric multiprocessor, is
quite different from the first two. Generally, SMPs combine a number of
processors and a high-performance bus that provides both high bandwidth and
low latency to central memory and I/O devices.

These systems employ snoopy cache coherence to keep processor utilization
high and reduce bus loading. There are numerous examples of this class of
system, ranging from the high-end SGI Power Challenge, Sun Ultraserver and
DEC Alpha Server to the low-end two- and four-processor PC systems.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 4

The SMPs primary advantage is the shared-memory programming model, which
is a more natural extension to the uniprocessor model than the message-passing
model. Shared memory also permits low-latency interprocessor communication.

Finally, the large central memory and I/O resources in an SMP are directly
accessible to all processes running on the system, unlike the distributed
resources of an MPP or cluster.

PVP architecture

The last class of MP system is the parallel vector processor, or PVP. PVPs differ
from the other classes in that they are based on specialized vector processors
instead of high-volume microprocessors.

They are also different in that the vector processors operate directly out of a
high-speed memory without intermediate caches. They can achieve high
throughput by hiding the latency to memory by operating on vectors instead of
individual memory words.

C90, and T90.

The high-end vector machines are based on bipolar technology and utilize a very
high performance interconnection to an SRAM main memory. This makes PVPs
unique in that their performance can remain high on codes that cannot use
caches effectively. Unfortunately, they also suffer from high cost and low volume
due to their special-purpose nature.

PVPs do serve an important niche of scientific applications such as
computational fluid dynamics codes that need very high performance, but cannot
utilize caches well.

[20b] The ideal multiprocessor would combine the best of all of these. It would
provide the scalability of MPP systems, the cost economics of cluster-based
systems, the programming model and tight coupling of an SMP, and the floating-
point performance and high memory bandwidth of PVPs.

Lecture 22 Architecture of Parallel Computers 5

A scalable SMP restructures the SMP class to incorporate the advantages of the
other architectures while retaining the programming model and low-latency
communication of the SMP.

In this talk, I will focus on how the SSMP incorporates the functions of the MPP,
cluster, and SMP. Integrating PVP into the SSMP is primarily a question of per-
processor floating-point performance and memory-latency tolerance, together
with the amount of memory spent on the memory system to achieve high
bandwidth.

SMP. Its bus structure is key to both its tight integration and cache coherence,
but is also the inherent limitation on the scalability of the system.

 The cost of the bus itself limits how small a system can effectively be
configured.

 The fixed bandwidth of the bus limits how far the SMP can scale to
support a large number of processors.

The first step in the evolution of an SMP is to remove the bus and replace it with
a switch. The switch removes the bus bottleneck by giving the system scalable
bandwidth that can grow as the system grows.

Switch-based SMP

Further, the switch can be small when the system is small, and grow as the
system grows.

An additional change is to the means of cache coherence, since the snoopy
schemes used on bus-based SMPs rely on broadcasting every memory
reference to every cache. This is done by adding directories to memory so that
the memory knows which processors hold a copy of a memory block; the

-based coherence in a
moment.

The overall effect of replacing the bus with a switch is that the bus bottleneck is
removed and the system is much more scalable. We also have increased
modularity, in the sense that the switch structure can grow as the number of
processors grows, in order to provide higher performance.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 6

But we still have not attained the ideal structure, because the switch adds
latency and uses shared bandwidth for memory locations that are accessed only
by a single processor. The next step is to push portions of the memory through
the switch, and distribute the shared memory and I/O with the set of processors.

Distributed shared memory

With the distributed shared memory, or DSM, structure, memory and I/O that has
an affinity to a set of processors can be accessed with lower latency and does
not use the shared bandwidth of the global interconnection.

Memory bandwidth increases naturally as processors are added. Moreover,
modularity is greatly increased, because each node is a complete functioning
unit, and an entry system need not have a global switch at all.

DSM systems are also referred to as NUMA, or non-uniform memory access,
machines. This is in contrast to traditional bus-based SMP or switch-based PVP
systems, where all memory is equidistant, and there is a uniform memory
access, or UMA.

NUMA systems that support caching of local and remote memory are referred to
as CC-NUMA, for cache-coherent NUMA. The DSM, or CC-NUMA, system has
the same basic structure, and thus scalability, as the MPP or workstation cluster.
The primary difference is that the memory is accessible to all processors directly.

Furthermore, I/O can be accessed directly by each processor, and I/O devices
can DMA directly into any portion of memory, as in an SMP. All that is changed
from an SMP is that the memory and I/O resources have been distributed along
with the processors.

as an array of state information that supplements each bank of data memory.

Lecture 22 Architecture of Parallel Computers 7

Each memory block, which is a cache-line sized block of memory, typically 32 to
128 bytes, has an associated directory entry.

This added state information contains

 state bits, that indicate whether the particular block is cached, and, if
cached, whether in a shared read-only state, or an exclusive read-
only state, and

 pointer information, which indicates which processors have this block
cached. In this example, the pointer information is stored as a bit-
vector with each bit representing one processor.

processors.

Load to cached/unshared block: Assume processor 0 starts by doing a load
from memory on another node.

 The processor finds that it does not have the data already in its
cache, and issues a request for a shared copy of the memory block.

 This request travels to the appropriate memory, based on its
address, accesses the memory location and directory, and
determines that the line is either uncached, or cached only for
reading by other processors.

 The memory returns a copy of the memory block, and updates the
directory to indicate that the line is now shared, and that processor 0
has a shared copy.

 Other processors can also read this block, updating their sharing or
presence bit in the directory as well.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 8

Store to shared block: Now assume that processor 7 does a store to the
memory location.

 This generates a read-exclusive command that is sent to the memory.

 The memory receives this command, and uses the information in the
directory to determine that the line is shared, and which processors
are sharing the line.

 The memory then sends invalidation requests to those processors and
only those processors, and returns the line to the writing processor.

 The directory transitions to the dirty state, indicating
that processor 7 has the only up-to-date copy of the
memory block.

 The invalidate messages also generate acknowledgments to the

writing processor, so that it can determine when all stale copies have
been eliminated.

 Now that the writing processor has exclusive ownership, it can read
and write the block in its cache without further memory transactions.

Load to dirty block: Upon a subsequent read by another processor, however, the
reading processor sends its request to memory, and the directory indicates that
an exclusive copy is held by the writing processor, and that memory is not up to
date.

This read request is then sent on to t
cache returns the data to the reading processor, and sends a copy of the data to
update memory and return the directory to the sharing state.

Lecture 22 Architecture of Parallel Computers 9

e.

Write-back and removal from cache: The other possibility is that the writing
processor replaces the dirty line in its cache by issuing a write-back request to
memory.

This message indicates that the dirty cache is removing its exclusive copy and
updating the data memory, leaving the directory in the uncached state.

Importance of directories:

 Only processors that access a memory block are involved with coherence
for that block.

 Thus, the overhead of cache coherence is never more than a fraction of
the traffic required to access the given memory block if it were never
cached at all.

 Memories only communicate with processors, never with one another.

 Thus, bandwidth to global cache-coherent memory can be scaled with
directories by simply adding additional memory banks, or, in DSM
systems, by adding additional nodes to the system.

[20c] Scaling the SMP model. The directory structure was originally proposed
by L. Censier and P. Feautrier in 1978.

1980s: Commercial cache-coherence schemes were based on snoopy cache
coherence because snoopy schemes were simpler and placed the burden of
coherence on the caches themselves.

Late 1980s: Directory-based cache coherence attracted renewed interest in
academia when the inherent bottlenecks of bus-based SMP systems began to
be felt.

Many universities began programs to investigate scalable systems.

Another early effort at a directory-protocol implementation was taken on by the
IEEE Scalable Coherence Interface Working Group. This group defined an
interface standard for modules that includes a directory-based cache-coherence
scheme that could be used to build up SSMP systems out of nodes conforming
to the SCI standard.

1991: IEEE Scalable Coherent Interface standard.

The earliest commercial DSM systems were the Kendall Square Research KSR-
1, introduced in 1991, and the Convex Exemplar SPP-1000, introduced in 1993.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 10

These early machines were not very successful, with KSR folding, and Convex
struggling financially and eventually being acquired by Hewlett-Packard.

The limited acceptance of these early DSM machines was due to improved bus
technology that yielded bus-based SMP machines with more than 1 GB/s. of
memory bandwidth, and to the fact that high-performance switches could only be
built from expensive bipolar or gallium-arsenide technology at this time.

Today, the need for higher performance and greater scalability has driven much
interest in DSM systems. Technology improvements and commodity CMOS
have also made such systems much more cost effective.

Some of the announced second-generation DSM systems include

 SGIs Origin servers

 -cube systems, and

 -Q line.

 Convex, in conjunction with HP, has announced their second major
generation of Exemplar DSM systems, the X class.

Other products are rumored to be in the works from other major computer
vendors.

The performance characteristics of a DSM system can greatly affect its usability.

 DSM ?= scalable SMP?

 DSM structure similar to that of distributed memory. Only difference
is means of accessing interconnection network and remote memory.

 Difference is support for SMP programming model. In SMP,
accesses to remote nodes are supported by hardware.

 Effectiveness depends on latency and bandwidth to remote memory.

If a system can achieve high bandwidth and low latency to all memory, then it
can function as an SMP.

If latency is very high, or bandwidth is very low, then use of remote memory
needs to be carefully controlled by the user. The system functions more as a
distributed-memory system with a shared-memory communication system than a
scalable SMP.

-memory bandwidth and
latency.

Lecture 22 Architecture of Parallel Computers 11

If one assumes that the processor is stalled on cache misses and waiting for
memory 25% of the time, then one can calculate its relative efficiency when
accessing remote memory, which has greater latency than local memory.

Plotting relative efficiency, based on the ratio of local references, one sees that if
remote-memory access times are kept within 1 1/2 to 3 times local, then even
when all references are remote, efficiency is still 2/3 of when all references are
local.

If locality can be increased to 50% or better, then efficiency is 80% or better.

By contrast, if remote accesses cost 5 10 times more than local, then locality
must be kept very high, or performance falls off dramatically. (It is about 30% if
100% remote references and remote references take 10 times as long as local.
It is about 40% under those assumptions if 50% of references are local.)

With a large ratio, the programmer must take great care to keep locality high and
manage all references to remote memory.

Thus, this kind of system cannot be programmed as an SMP, where memory
placement is irrelevant and only cache reuse is important.

Likewise, looking at remote bandwidth, if there is only a fraction of local
bandwidth available to remote memory, then queueing delays can increase
latency and hold down efficiency when remote memory is accessed.

For example, if one assumes local memory is kept 40% occupied if all
references were local, then if remote bandwidth is a fraction of local, then
utilization of memory will be higher than if all references were local.

Ideally, remote bandwidth equals local, and memory utilization is unchanged by
locality. But, in many systems, remote bandwidth is less than half of local, and
possibly even lower than 1/8. The effect can be to drive memory utilization very
high, or even into saturation. If saturation is reached, then scalability will
obviously be limited. Even near-saturation conditions will raise memory latency
considerably.

minimized and remote-memory bandwidth is kept near local.

I/O bandwidth: As with memory, scaling the SMP model requires that remote-I/O
bandwidth is kept high. Furthermore, large central-bus SMP systems provide an
attachment point for very high-performance I/O devices that are often not very
well supported in workstation-class systems. Examples include high-
performance networking, such as HIPPI; disk connectivity, such as Fibre
Channel; and high-

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 12

To function as an SMP replacement, DSM systems must include such high-
performance attachment points, and must have sufficient system bandwidth to
support these devices. Simply having a larger number of lower-performance

SMPs.

[20d] SG
work on the Origin began in late 1993. Systems first shipped in September
1996.

The Origin line ranges from inexpensive uniprocessor desk-sized servers to
multirack supercomputers with 128 or more processors, all based on the same
chip set and S2MP architecture.

Challenge, and the DASH project from Stanford. The Power Challenge set the
bar of performance against which Origin was measured, while the experience on
DASH provided the basis for many of the initial design directions of S2MP.

Among the design goals were

 Follow on to Power Challenge SMP. There had to be a smooth transition
that would not force customers to recode existing applications to
CC-NUMA architecture. This implied that latencies and bandwidth to
remote memory had to be very aggressive.

 Scalability to many CPUs. Power Challenge could have up to 36
processors.

 Cost effectively scale up and down. Also needed to scale down more
-bit-wide bus.

 Continued I/O, graphics leadership.

Here is a block diagram of the Origin system, which can scale from 1 to as many
as 1024 MIPS R10000 processors.

Lecture 22 Architecture of Parallel Computers 13

Each node within Origin is based on a highly integrated hub chip. It supports
interfaces to two R10000 processors, up to 4 GB of synchronous DRAM, a pair
of high-speed XIO links to the I/O subsystem, and a pair of links to the high-
spe

These interfaces are connected by an internal 64-bit crossbar, which can support
up to 3.1 GB/s. of memory and I/O traffic.

Processor and I/O interfaces, along with the memory directory controllers within
the hub of the system, communicate with via messages to implement the CC-
NUMA protocol. The network interface adds the required information to route
the hub internal messages across the global interconnection.

The Cray link interconnect is implemented on a pair of unidirectional 20-bit links
that run at 390 MHz, supplying a peak data-transfer rate of 780 MB/s. in each
direction. These links run both within a single module and between modules
over cables up to 5 m. in length.

The routing network is based on a 6-ported Spider routing chip developed at
SGI. Systems up to 64 processors are built by interconnecting hubs and routers
in a hypercube topology.

With four-processor systems, hubs are
directly connected. Beyond this, two hubs are
connected to each router. The hubs are then
configured into hypercubes of increasing
dimension. Attaching two nodes to each

a tradeoff between reducing cost and
decreasing latency, vs. per-node system
bandwidth.

At the 64-processor level, all ports of the
router are used, and going beyond this

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 14

requires another level of interconnection.

n grow to a 5D hypercube of 32-processor local
cubes and interconnect up to 1024 processors.

XIO crossbar I/O subsystem: The XIO system uses the same high-speed
physical interconnection as Cray link, but in a much more limited application, in
the sense that there is a single level of crossbar, connecting up to six XIO cards
to a pair of nodes. An XIO card can be native to XIO, for the maximum
bandwidth of 1.6 GB/s., but more commonly, device interfaces connect to a PCI
bus, which is bridged to an XIO link. Generally, the PCI bus is embedded on the
XIO card, which implements a multiported unit of I/O expandibility.

The effect is that I/O is added to the system not one PCI card at a time, but an
entire PCI bus at a time. For low-volume and legacy devices, there is also
support for standard internal PCI cards and bridges to external VME card cages.

Modular system packaging: A single Origin module includes

 1 to 4 nodes (8 CPUs).
 12 XIO slots.
 2 XBOW switches.
 2 router switches.
 5 UltraSCSI disk drives.

The packaging allows the system to scale down to a cost-effective uniprocessor
desk-size system, as well as to scale up with multiple 8-processor modules to a
supercomputer-size system.

[20e] Design issues: The design was driven by our overriding goal to provide a
truly scalable shared-memory design. This meant the ability to support small
systems, as well as very large systems, and to grow incrementally.

Support of large systems also required us to address system reliability.

Lecture 22 Architecture of Parallel Computers 15

Design issues include

 Processor and system interface.
 Node structure and size.
 Interconnection topology.
 Locality optimizations to increase locality of reference.
 Directory structure.
 Coherence-protocol optimizations.
 System-availability features.

One requirement of any parallel system is that the processor be both high
performance and highly integrated.

Processor design considerations:

 High-performance processors needed. Due to sections of limited
 parallel systems will outperform a

uniprocessor if the processors in the parallel system are significantly less
powerful.

 Large shared address space. In Origin, up to 1 TB (240) of physical
memory is addressable from each processor. This requires a large virtual
address space, larger than 232.

 Multiple outstanding memory operations. The dynamic pipeline allows a
high degree of parallelism in the memory subsystem. The caches of the
R10000 are non-blocking, and generate up to four outstanding reads to
the memory system. Further, the hub can also process up to eight
concurrent write operations, for a total of up to 12 transactions per
processor.

 These multiple transactions both increase processor efficiency, by
reducing the impact of memory latency, and increase throughput of
algorithms that have limited cache reuse.

 In Origin, these are especially important, since these references are how
processor-to-processor communication takes place.

Non-blocking cache operations:

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 16

Integrated node structure: The next tradeoff was the structure and size of DSM
nodes. Each node is tied together by a single hub chip that provides multiple
interfaces, each capable of moving data at 780 MB/s.

The node design is primarily a tradeoff in the number of processors supported
per node. The smaller nodes used in Origin provide a very tight coupling
between the processors and the local and remote memory. With small nodes,
local memory latency is comparable to the most integrated uniprocessor designs,
since both only have a single chip between the processor and the memory itself.
The small node size also allows a lower-cost entry point.

Larger nodes permit a tighter coupling of processors within a node, which can
decrease communication costs between the processors within the node. Also, it
can potentially reduce the overhead of the node interface to the global
interconnection.

In Origin, we push for the single-chip design to reduce access time for both local
and remote memory. The single chip also permits a cost-effective crossbar
within the hub chip. This is important, because it permits local processors to
access remote memory without interfering with remote processors accessing the
local memory.

An alternative scheme, used on a number of systems, including DASH, is to add
a DSM-interface card to an existing small-scale bus-based system.

The problem with this type of design is illustrated by the following graphic.

Lecture 22 Architecture of Parallel Computers 17

 In order to access remote memory, the bus must be traversed three
times. This adds considerable latency.

 Assuming all processors are accessing remote memory, there are
conflicts on the bus passing local data to remote processors while
also passing remote data to local processors.

 Since remote accesses require multiple bus transactions, remote
bandwidth will be reduced by a factor of 2 to 3. This can lead to a
large disparity between local and remote memory-access times.

Cray link interconnection design: Goal of interconnection is to provide low
latency, high bandwidth, and scalable performance and cost.

One important metric is bisection bandwidth, or the bandwidth across the center
of the interconnection. Generally, for uniform data accesses, bisection
bandwidth is akin to an SMP bus.

Interconnections vary from bus structures, to unidimensional ring structures,
through 2D and 3D mesh structures, to hypercubes.

Early large parallel machines predominantly employed hypercube architectures;
however, work done by Bill Dally and Chuck Seitz created a thrust toward lower-

IEEETC paper
is that for an equal number of wires, the lower-dimensional networks permitted
larger, wider links. This reduces the time to receive a message, and makes up
for the larger number of switches that must be traversed.

Looking in more detail at the parameters used in the study, the time to receive a
message once it reaches its destination usually dominates the latency.

However, in Origin, we started with the most aggressive link and router design
we could implement, and then studied what topologies would give the best
performance. Given that the links are 16 bits wide, and that the latency of a
router is 20 times the period of a word, the effective message size is very small,
0.8 words, falling out of the latency equation (instead of 150 words estimated by
Dally).

With this new parameter, the latency curve vs. message dimension shows that
latency is always reduced by increasing the dimension of the network.

Implementing a hypercube with 16-bit links for up to 512 nodes was not feasible,
since it would imply support for 10 links/router, which was too many pins for

structure. In this structure, the bisection characteristics of the hypercube are
maintained, with the only penalty being the two additional switch latencies to
traverse the added hierarchy.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 18

In larger systems, beyond 128 nodes, the simple star structure at the top level
becomes a 3-, 4-, or up to 5D hypercube. This supports up to 1024 processors.
The fat hypercube has latency that is proportional to the log of the number of
nodes in the system, and its bisection bandwidth grows linearly with the number
of nodes.

For large systems, the latency is slightly higher than a pure hypercube, but much
lower than for a 2D-mesh design that could be built with the same router chip,
especially above 256 processors (larger than 8 8 mesh).

Also note that unloaded local latencies are 320 ns. The closest remote memory

doubled. Thus, Origin keeps the ratio of remote to local latency at 2 or 3 to 1,
and is below 4 to 1 even for the largest 1024-processor system.

Also, the hypercube network also has bisection bandwidth that grows linearly,
not by the square root or cube root, as would be the case in a 2D or 3D mesh.

[20f] While minimizing latency is important, achieving higher performance on a
DSM system than an SMP system relies on having a good fraction of the
references satisfied by local memory. This can be aided if the OS allocates
memory to processes on the same processor that they are running on. For
single-threaded jobs, this is fairly easy. For parallel jobs, it is not clear which
processor will reference the given memory location the most.

Block-transfer engine instead of cluster cache: Many DSM systems implement a
3rd-level node or cluster cache to help improve locality automatically in
hardware. Such a cache can reduce the number of capacity misses that must
be satisfied by remote memory; however, they do not help communication
misses, and are subject to conflict misses themselves. In this case, the cluster
cache has a negative effect on remote bandwidth and latency.

Since the cluster cache must be large, it is made of DRAM. Using a cluster
cache implies that misses result in three DRAM accesses:

1. to determine that the block is not in the local cluster cache,
2. to fetch the block from its home memory, and
3. to allocate the data into the local cluster cache.

Lecture 22 Architecture of Parallel Computers 19

This will obviously impact latency.

Origin does not use a cluster cache, and instead relies on page migration to
improve locality.

 Page migration is assisted by hardware that keeps 64 reference counts on
each 4K page of memory.

 On every access to memory, the count of the accessing node is
incremented and compared with the home node.

 If the count is higher than a given programmable threshold, the hardware
interrupts one of the local processors.

 This counting function does not affect the bandwidth of the data memory;
it is implemented in the directory memory.

-transfer engine, or BTE, per
processor, which can copy the page at near the memory-bandwidth limit.

The BTE allows migration without polluting the cache of either the local or
remote processor.

so that subsequent accesses by other processors receive a bus error.

algorithm, which reduces the overall cost of migrating memory and changing the
virtual-to-physical address mappings.

Similarly to a cluster cache, the BTE scheme used in Origin can help optimize
locality. It has the added advantage that it does not increase latency or
decrease bandwidth to remote memory.

The only downside is that it does not react as quickly as the cluster cache to
changes in locality. But this effect is reduced by the filtering of references by the
processor caches.

Directory organization: The structure of the directory can become a scalability
limit in systems using a simple bit-vector scheme. This is because length of the
bit-vector grows by the square of the processor count. (The amount of memory
grows linearly with the number of processors, and the width of the bit-vector also
grows with the number of processors.)

In order to minimize this overhead, the directory entries have two formats.

 The smaller 16-bit width of directory memory supports systems up to
16 nodes, or 32 processors.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 20

 The other, extended directory adds 32 bits to the base directory to
create 48-bit-wide directory entries. In addition, the directory is
implemented in two sequential memory locations, so the effective width
of the directory status information, bit-vector pointers, and ECC, is either
32 or 96 bits (compared with 1152 bits for the data block plus ECC).

In either format, the directory pointers are either a binary pointer to the exact
dirty processor or I/O cache, or a bit-vector specifying which nodes have the
block cached in the shared state.

State Binary pointer

 Memory block exclusive
 3-bit state + 6-bit binary pointer standard
 + 11-bit binary pointer extended

State Bit-vector

 Memory block shared
 3-bit state + 16-bit vector standard
 + 64-bit vector extended

Coarse directory format (for > 128 processors):

For systems with larger than 64 nodes, an additional coarse directory format is
used. The coarse format is only needed when more than one-eighth, or octant,
is caching a line.

When the line is only cached within an octant, the binary octant field, together
with the 64-bit bit-vector, fully specifies which processors are caching a block.

If a memory location is cached in more than one octant, the bit-vector is
interpreted as a coarse bit-vector, where each bit represents eight nodes.

State Binary pointer

 Memory block exclusive
 3-bit state + 11-bit binary pointer

State Octant Bit-vector

Lecture 22 Architecture of Parallel Computers 21

 3-bit state + 3-bit octant + 64-bit vector

State Coarse bit-vector

 Memory block shared in > 1 octant
 3-bit state + 64-bit coarse vector

Thus, with the coarse bit-vector format, we can cover the sharing case where all
1024 processors are caching a given memory block. We only need to resort to
the inefficiencies of the coarse format when we have a > 128-processor system,
and a memory block is shared by processors that are not in the same octant.

Overall, while the directory overhead in Origin is high, it is robust meaning that
it does not have access patterns that result in severe performance degradation
and because the directory-memory overheads, including the migration counts,
are still reasonable, being less than 6% in small systems and less than 17% in
large systems.

[20g] Coherence-protocol optimizations: The DASH coherence protocol was
used, but it has been optimized in several ways, to reduce latency and maximize
bandwidth for uniprocessor and parallel workloads.

The first enhancement is support for the clean exclusive (CEX) cache state, in
addition to the normal invalid, shared, and dirty states.

The CEX state is used when data is returned from memory for a read request,
but is currently uncached by any other processor (as would be the case for
normal uniprocessor data). The data is returned exclusively to the processor,
which can store directly to that location, without having to reference memory
again to obtain exclusive ownership.

In contrast, without CEX support, a processor would first obtain a shared copy
for the read request, and then have to re-access memory to obtain exclusive
ownership.

The second enhancement is support within the coherence protocol for
processors dropping CEX or shared data from their cache without updating the
directory. This enhancement maximizes memory bandwidth, especially in the
uniprocessor case, because no memory transactions are required simply to
update the directory. All accesses are simple reads and write-backs used to
obtain data.

If directory updates are required, then every cache replacement requires two
directory accesses, and memory bandwidth could be reduced by up to a factor of
two.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 22

There are other enhancements to enhance multiprocessor communication,
similar to those used in DASH.

In particular, there is support for request forwarding. For reads of data held dirty

request to the dirty cache.

This cache responds by sending the dirty data to the requesting processor in
parallel with sending the sharing write-back to memory.

Likewise, upon a read-exclusive request to satisfy a store by the processor, there
is a requirement to eliminate the other cached copies. Forwarding in this case
implies that memory sends invalidations to the sharing processors, and they
return invalidate-acknowledgments directly to the running processor.

In both the read and read-exclusive case, forwarding reduces serialization by
one system message, reducing latency by 25%.

Availability features: Another important aspect of the design of a large system is
support for high reliability.

 Modularity and redundancy are basis for high availability.

 All SRAM and SDRAM covered by SEC/DED ECC.

 Highly integrated VLSI with controlled operating temperature.

 All high-speed links covered by CRC and include link-level error
detection and HW retransmission.

 Cray link interconnection for multiple paths between modules and hot
plug capability.

Control of sharing.

 Large-scale machines require protection from OS panics.

 Internal registers and I/O devices protected by 64-bit access-control
registers.

 Each 4KB page protected by similar vectors.

make its virtual-memory manager and scheduler NUMA-aware.

Benchmark results: From Stream benchmarks, which carry out stride-one vector
operations over memory, and the benchmark allows each processor to access its
local memory. Origin outperforms the competition.

Lecture 22 Architecture of Parallel Computers 23

On this benchmark, though, even cluster-based systems scale, since the
benchmark allows processors to reference their local memory. On benchmarks
that require running out of remote memory, Origin shows only a 12% degradation
when memory placement is uncontrolled.

Origin functions as a truly scalable SMP.

Conclusion: This work has shown that the SMP programming model can be
made to scale to large processor counts with high performance. The two key
techniques are directory-based cache coherence and scalable interconnection
networks. These allow SMP model to stretch to design space previously only
covered by parallel vector processors. It can also scale down to more common
smaller configurations.

Lecture 23 Architecture of Parallel Computers 1

Protocol Races

[§10.4] We have assumed—

 Directory state reflects the most up-to-date state of caches.
 Messages due to a request are processed atomically.

In reality, one of or both conditions may be violated

 Protocol races can occur
 Some protocol races can be handled in a simple way; others

are trickier.

We will discuss how protocol races can be handled.

 Purpose of discussion: illustrate approaches for dealing with
protocol races.

 Discussing all possible races is not the goal.

Handling races: out-of-sync directory

[§10.4.1] Suppose the home sends an invalidation to a node that has
replaced the block silently.

 The node can reply with

Suppose that the home receives a read request from a node that is
already a sharer from the home point of view.

 The directory can reply with data

Suppose that the home receives a read/write request from a node
that the home thinks is the owner.

 (In the directory, what state is this block in?)

 What might have happened to the block?

o If the block was clean,

o If the block was dirty,

 What should the home do? (Why will neither of these work?)

o Wait?

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

o Reply with data?

The directory alone cannot resolve this. Coherence controllers
at other nodes must participate in the solution.

What does the coherence controller at a node n need to do
when a flush or writeback occurs?

o Maintain an outstanding transaction buffer (OTB) for flush
messages.

o Require the home to acknowledge the receipt of a flush

These two steps allow node n to delay a Read/ReadX request
to a block that is still being written back.

Hence, the home only receives Read/ReadX to a block that is
not being written back.

o When it does, it can send a

Protocol modification

Here is a modified state-transition diagram.

What is the meaning of “owner” in a directory protocol?

Lecture 23 Architecture of Parallel Computers 3

The meaning of “owner” is ambiguous here …

because the directory may be out of sync with cache states,

the directory may get a Read or ReadX from a node it thinks is
the owner (but actually isn’t).

(This isn’t permitted by the protocol.)

What do we do about it?

Split EM into two states (EMA and EMB) to reflect this situation.
EMA means the directory thinks the current owner is A.
EMB means the directory thinks the current owner is B.

Transitions from state U

Suppose the block is in state U in the directory.

What happens on a ReadX request?

o The system fetches the block from the local memory,
sends a ReplyD to the Requester, and moves to state

What happens on a Read request?

o The system

o What state does the requesting cache transition to?

o What state does the directory transition to?

Transitions from state S

Suppose the directory state is S.
What happens on a Read request?

o The directory knows it has a valid block in the local
memory.

o It sends a to the Requester and updates the
sharing vector.

o Directory state

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

What happens on a ReadX request?

o Directory sends to the Requester.

o Directory sends to all (other) sharers.

o State changes to

o But, if it’s an upgrade, it just

Transitions from state EM

Suppose WLOG the directory state is EMA.

Suppose a Read request (from a different node B) is received.

The state is set to

An is sent to the owner (A) to change its
state to

Suppose a ReadX request (from a different node B) is received.

Directory sends an invalidation message to

This message also says to send the data to

Directory sends a reply message to B, saying that will supply
the data.

State transitions to

(Note that it doesn’t matter whether owner is in state E or M.)

Suppose the directory has an out-of-sync view of cache states, and is
in state EMA.

Suppose it receives a Read or ReadX from A.

o This means A’s block must’ve been replaced due to a
cache miss.

The directory knows that A is really the owner.

Thus, it can just respond with

Lecture 23 Architecture of Parallel Computers 5

Handling races: non-atomic messages

1. [§10.4.2] A sends a read request to home.
2. Home replies with data (but the message gets delayed).
3. B sends a write request to home.
4. Home sends invalidation to A, and it arrives before the ReplyD

Why is this a problem?

This is called an “early invalidation” race.

How should A respond to the invalidation?

Two incorrect ways to respond:

A replies with InvAck.

o B thinks that its write propagation is complete
o A receives a ReplyD and places the block in its cache

(the block that should have been invalidated).

A ignores the invalidation message

o The message is lost; write propagation has failed to occur

Solution:
Brute force (avoids overlapped handling of requests):

o Home waits until it receives ack from all parties (home-
centric)

Allow overlapping but ask nodes to participate (requester-
assisted)

o Node keeps an OTB

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6

o It does not entertain requests (to the same block) until the
current transaction is completed

Exercise: Explain how each of these scenarios would play out using
the four-step diagram above.

Processing a Read Request

Case 1: Read to clean block

Home-centric approach

Directory enters a
transient state.
Home replies with data
Requester receives
data, sends ack to
home.
Home closes
transaction (transitions
to a stable state, update
sharing vector).

Cons: too much serialization at home, transaction closed late, and
it requires ack

Requester-assisted approach
Directory sends ReplyD, then closes transaction
Requester buffers/nacks all new requests until ReplyD received
(i.e., till the current Read transaction is completed)

Lecture 23 Architecture of Parallel Computers 7

Case 2: Read to block in EM state

Home-centric approach

Requester sends Read to home
Home enters a transient state, sends intervention to owner
Owner flushes block to home and requester
Requester sends ack back to home
Home closes transaction (transitions to shared state, updates
sharing vector)

Requester-assisted approach

Requester sends Read to home
Home enters a transient state, sends intervention to owner
Home cannot close the transaction yet, because in the final
state (Shared), it must have a clean copy of the block
Owner flushes block to home and requester
Upon receiving the block from owner, home closes transaction

Processing a write (ReadX) request

We will cover this in the next class.

Write Propagation and Serialization

[§10.4.3] In a directory-based protocol,

Write propagation is achieved through invalidation.

Multiple writes to a block are serialized by the protocol.

o Transaction closes after the ack from current owner is
received by home.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 8

o A new ReadX request is not served until the previous ReadX
request is closed.

o This provides write serialization

Here is a diagram of serializing writes by A, B, and C.

Is it using the home-centric or requester-assisted scheme?

Memory consistency models

[§10.4.5] Implementing sequential consistency:

All memory accesses by a processor must be issued and completed
in program order.

Which of the two (issuing or completion) is hardest to assure?

Write completion detected when all InvAcks are collected
When does read completion occur?

Prefetching and load speculation can be used.

As the number of processors grows,

Average latency of a cache miss increases
Harder to hide it
What does this do to the viability of SC?

Lecture 24 Architecture of Parallel Computers 1

Interconnection networks

When more than one processor needs to access a memory structure,
interconnection networks are needed to route data

from processors to memories (concurrent access to a shared
memory structure), or

from one PE (processor + memory) to another (to provide a
message-passing facility).

Inevitably, a large bandwidth is required to match the combined
bandwidth of the processing elements.

» One extreme is a shared bus. How does the cost scale as the
number of processors N increases?

How does the bandwidth scale?

» For concurrent access to shared memory, the ideal structure is a
, which can simultaneously connect any set of

processors to any set of distinct memory modules.

All N processors can access all M memory
units with an N M crossbar switch.

Since there are usually about as many
processors as memories, as processors are
added, the complexity of a crossbar switch
grows as N2.

How does the bandwidth scale? Memories

Crossbar
Switch

For reasonably large values of N, the crossbar switch may be more
expensive than the processors and memories.

» For message passing, the most general is the complete
interconnection network a path from each processor to every other
processor.

Unfortunately, this requires bidirectional links.
Cost grows with the square of N.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2022 2

Measures of interconnection performance

Several metrics are commonly used to describe the performance of
interconnection networks:

 Degree, the number of
node.

 Diameter, the maximum number of nodes through which a
message must pass on its way from source to destination.

Diameter measures the maximum delay in transmitting a
message from one processor to another.

 Average distance, where the distance between two nodes is
defined by the number of hops in the shortest path between
those nodes. Average distance is given by

davg =
d=1

r

 (d . Nd)

N 1

 where N is the number of nodes, Nd is the number of nodes at
distance d apart, and r is the diameter.

 Bisection width, the smallest number of wires you have to cut to
disconnect the network into two equal halves (±1).

For a crossbar, give all of these metrics: Degree, diameter, average
distance, bisection width.

Which of these metrics are measures of performance, and which are
measures of cost?

Interconnection topologies

[§10.4] An idealized interconnection structure

Lecture 24 Architecture of Parallel Computers 3

 takes a set of n n 1 and

 sets up connections between them and a set of m output ports
m 1,

 with the connections determined by control signals.

Interconnection
structureInput n

Input 0 Output 0

Output m

Control signals
Usually we will assume that m = n.

Here are some sample topologies.

1. Ring.

Processor i directly connected to processors i+1(mod N) and i 1
(mod N). Data can be moved from any processor to any other by a
sequence of cyclic shifts.

Motivation: Many parallel algorithms include calculations of the form

X [i] :=
X [i 1] + X [i]

2

Usually every item of an array except the first and last is updated in
this way.

The processor interconnections can be
diagrammed as a bidirectional ring:

The diameter of a bidirectional ring is
. Its bisection width is

What about average distance and
degree?

2. Mesh interconnection network

A mesh is like

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2022 4

One motivation: Four-point iteration is common in the solution of
partial differential equations. Calculations of the form

X [i, j] := (X [i +1, j] + X [i 1, j] + X [i , j 1] + X [i , j +1]) ÷ 4)

are performed frequently. Old New

i
i

i +1
j

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

a b c d

a b c d

f

g

h

f

g

h

e

e

Here is an
example of a 16-
node mesh. Note
that the last
element in one
row is connected
to the first
element in the
next.

If the last element
in each row were
connected to the
first element in
the same row, we
would have a
torus instead.

In the Illiac IV, each processor i was connected to processors:

{i+1, i 1, i+8, and i 8} (mod 64).

The diameter of an Illiac IV mesh is N 1. For example, in a 16-
node mesh structure, it takes a maximum of 3 steps. To see that, let
us look at the mesh interconnection network shown in the form of a
chordal ring:

Lecture 24 Architecture of Parallel Computers 5

0 1

2

3

4

5

6

79

10

11

12

13

14

15

8

In a 64-element mesh, any node can be reached from any other in no
more than 7 of these shifts.

Without the end-
diameter is 2(N 1).

It is also possible to have a multidimensional mesh. The diameter of
a d-dimensional mesh is d(N 1/d) 1 and its bisection width is N(d 1)/d

The average distance is d 2(N 1/d)/3 (without end-around
connections).

3. Hypercube

000

100

110

010

001

011

111

101

A hypercube is a generalized cube.
In a hypercube, there are 2n nodes,
for some n. Each node is connected
to all other nodes whose numbers
differ from it in only one bit position.

What is the degree of a hypercube?

What is the diameter of a hypercube?

What is the average distance?

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2022 6

What is the bisection width?

An interconnection network can be either single stage or multistage.

 If it is single stage, then the individual control boxes must be
set up to n times to get data from one node to another.

 Data may have to pass through several PEs to reach its
destination.

 Multistage networks have several sets of switches in parallel,
so data only needs to pass through several switches, not
several nodes.

For a multistage cube network, we can diagram the paths from one
cell to another like this:

0

1

2

3

4

5

6

7

0

2

1

3

4

6

5

7

0

4

1

5

2

6

3

7

0

1

2

3

4

5

6

7

Stage 0 Stage 1 Stage 2

A multistage cube network is often called an indirect binary n-cube.

4. Perfect-shuffle interconnection

This interconnection network is defined by the routing function

S ((an 1 a1a0)2) (an 2 a1a0 an 1)2

Lecture 24 Architecture of Parallel Computers 7

It describes what
happens when we
divide a card deck of,
e.g., 8 cards into two
halves and shuffle

7

6

5

4

3

2

1

0

7

3

6

2

5

1

4

0

We can draw the
processor
interconnections
required to obtain
this transformation
(at near right):

7 7

6

5

4

3

2

1

0

6

5

4

3

2

1

0

7 7

6

5

4

3

2

1

0

6

5

4

3

2

1

0

If the links are bidirectional, the inverse perfect shuffle is obtained
(above, right).

5. Shuffle-exchange network

By itself, a shuffle network is not a complete interconnection network.
This can be seen by looking at what happens as data is recirculated
through the network:

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2022 8

0 1 2 3 4 5 6 7

An exchange permutation can be added to a shuffle network to make
it into a complete interconnection structure:

E (an 1 a1 a0)2 an 1 a1 a0

A shuffle-exchange network is isomorphic to a cube network, with a
suitable renumbering of boxes.

Here is a diagram of a multistage shuffle-exchange network for N = 8.

0

1

2

3

4

5

6

7

0

4

1

5

2

6

3

7

0

2

4

6

1

3

5

7

0

1

2

3

4

5

6

7

Exch. 1 Exch. 2 Exch. 3

Shuffle 1 Shuffle 2 Shuffle 3

Sums (or other operations involving all the elements) can be
performed in log N steps.

In addition, with a shuffle-exchange network, arbitrary cyclic shifts of
an N-element array can be performed in log N steps.

Lecture 24 Architecture of Parallel Computers 9

This diagram shows how the switches in a shuffle-exchange network
can be set to route input k to output k + 3 (mod 8).

0

1

2

3

4

5

6

7

0

4

1

5

2

6

3

7

0

2

4

6

1

3

5

7

0

1

2

3

4

5

6

7

Exch. 1 Exch. 2 Exch. 3

Shuffle 1 Shuffle 2 Shuffle 3

Switches are set to pass through or cross over depending on the
exclusive-or of the input and output port numbers.

0 xor 3 = 0002 xor 0112 = 011 the first switch is set to pass
through; the next two along the route are set to cross over.

1 xor 4 = 0012 xor 1002 = 101 the first switch is set to cross over,
the next one to pass through, and the last one to cross over.

2 xor 5 = 0102 xor 1012 = 111 all three switches along the route
are set to cross over.

The diameter of a shuffle-exchange network is

The bisection width is

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2022 10

6. Butterfly network

A butterfly network is closely related to shuffle-
exchange networks.

The butterfly permutation is defined as

B(an 1 an 2 a1 a0) a0 an 2 a1 an 1

i.e., the permutation formed by interchanging the
most- and least-significant bits in the binary
representation of the node number.

This permutation can be diagrammed as shown
at the right:

7 7

6

5

4

3

2

1

0

6

5

4

3

2

1

0

Two variants of the butterfly permutation are the kth sub-butterfly,
performed by interchanging bits 0 and k 1 in the binary
representation

Bk(an 1 an 2 a1 a0) an 1an 2 ak a0 a1 ak 1

and the kth super-butterfly, peformed by interchanging bits n 1 and
k 1:

 Bk(an 1 an 2 a1 a0) ak 1 an 2 ak an 1ak 2 a0

The textbook has an interesting diagram showing how metrics
change with size for 2D meshes, hypercubes, and butterflies.

Explain what it says about increasing arity (k) vs. increasing
dimension (d). Given the numbers here, which network would be
more desirable for larger multiprocessors?

But why is this not the whole story?

Lecture 24 Architecture of Parallel Computers 11

7. Benes network

As we have seen, a crossbar switch is capable of connecting a set of
inputs to any set of distinct outputs simultaneously.

A shuffle-exchange, or multistage cube, network is not capable of
doing this. (It is easy to come up with an example.)

Is it possible to achieve an arbitrary permutation of input-output
combinations with less than a full crossbar switch?

Yes. The Benes network substitutes two N/2 N/2 crossbar
switches, plus an N-input exchange switch for a full crossbar switch,
as shown below.

D
ia

m
et

er

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2022 12

N
2

N
2

crossbar
switch

N
2

N
2

crossbar
switch

Input 0

Input 1

Input N

Input N

Output 0

Output 1

Output N

NOutput

ID

ID

ID

ID

OM

OM

OM

OM

The resulting N/2 N/2 crossbar switches can be similarly reduced.

Through this process, a full connection network can be produced
from 2 2 switches at significantly lower cost than a full crossbar:

0
1

2
3

4
5

6
7

0
1

2
3

4
5

6
7

The stages of a Benes network are connected by shuffle and inverse-
shuffle permutations.

The network is called rearrangeable, since the switch settings can
always be rearranged to accommodate any input-output mapping.

In some Benes networks, the switches are capable of performing
broadcasts, as well as pass-through or interchange.

Such Benes networks can achieve all NN possible input/output
mappings.

Trees

In meshes and hypercubes, the average distance increases with the
dth root of N.

Lecture 24 Architecture of Parallel Computers 13

In a tree, the average distance grows only logarithmically.

A simple tree structure, however, suffers from two problems.

 Congestion

 Its fault tolerance is low.

8. Fat trees

One approach to overcoming the limitations of the tree topology was
devised by Leiserson and implemented in the Thinking Machines
CM-5 data network.

The idea is that the edges at level k should have two or more times
the capacity of the edges at level k+1 (the root is at level 0).

In reality, the links at higher levels are formed by replicating
connections.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2022 14

The algorithm for routing a message from processor i to processor j is
as follows:

Starting from processor i, a message moves up the tree along
the path taking it to the first common ancestor of i and j.

There are many possible paths, so at each level the routing
processor chooses a path at random, in order to balance the
load.

Upon reaching the first common ancestor, the message is then
routed down along the unique path connecting it to processor j.

What are some metrics for a fat tree?

The diameter is

and its bisection width is

What is its degree?

We have shown a fat tree based on a binary tree. It may also be
based on a k-ary tree. The CM-5 used fat trees based on 4-ary
trees:

Lecture 24 Architecture of Parallel Computers 15

A k-ary fat tree can also be viewed as a k-ary Benes network that is
folded back on itself in the high-order dimension:

The collection of N/2 switches at level i is viewed as 2d i

2i 1 switches, where d is the dimension of the switch (where d is the
number of levels in the tree 4 in the picture).

