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Relaxed Memory-Consistency Models 

Review.  Why are relaxed memory-consistency models needed? 

How do relaxed MC models require programs to be changed? 
 

guaranteed is often a fence instruction. 

 

 The fence ensures that memory operations that are younger  
are not issued until the older mem ops have globally performed. 
The newer instruction must 

o wait until all older writes have been posted on the bus (or 
received InvAck); 

o wait until all older reads have completed; 

o flush the pipeline to avoid issuing younger mem ops early   
 
 

 Programmers must insert fences. 

What if amateur programmers perform their own synchronization, and 
forget fences?   

A continuum of consistency models 

Sequential consistency is one view of what a programming model 
should guarantee. 

Let us introduce a way of diagramming consistency models.  
Suppose that  

 
memory is 0. 

 Then processor 1 writes the value 1 to that word of memory.  
Note that this is a remote write. 

 Processor 2 then reads the word.  But, being local, the read 
occurs quickly, and the value 0 is returned. 
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This situation can be diagrammed like this (the horizontal axis 
represents time): 

P1: W (x)1 

P2:   R (x)0 
 
Depending upon how the program is written, it may or may not be 
able to tolerate a situation like this. 

But, in any case, the programmer must understand what can happen 
when memory is accessed in a DSM system. 

Sequential consistency 

Sequential consistency:  The result of any execution is the same as 
if 

 the memory operations of all processors were executed in 
some sequential order, and  

 the operations of each individual processor appear in this 
sequence in the order specified by its program.  

Sequential consistency does not mean that writes are instantly visible 
throughout the system (it would be impossible to implement that 
anyway). 

The example below illustrates two sequentially consistent executions.   

Note that a read from P2 is allowed to return an out-of-date value 
 

P1: W (x)1  P1: W (x)1 

P2:  R (x)0 R (x)1  P2:  R (x)1 R (x)1 
 
From this we can see that running the same program twice in a row 
in a system with sequential consistency may not give the same 
results. 
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Causal consistency 

The first step in weakening the consistency constraints is to 
distinguish between events that are potentially causally connected 
and those that are not. 

Two events are causally related if one can influence the other. 

P1: W (x)1 

P2:  R (x)1 W (y)2 
 
Here, the write to x could influence the write to y, because  

On the other hand, without the intervening read, the two writes would 
not have been causally connected: 

P1: W (x)1 

P2:   W (y)2 
 
The following pairs of operations are potentially causally related: 

 A read followed by a later write by the same processor. 

 A write followed by a later read to the same location. 

 The transitive closure of the above two types of pairs of 
operations. 

Operations that are not causally related are said to be concurrent. 

Causal consistency:  Writes that are potentially causally related 
must be seen in the same order by all processors. 

Concurrent writes may be seen in a different order by different 
processors.  

Here is a sequence of events that is allowed with a causally 
consistent memory, but disallowed by a sequentially consistent 
memory: 
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P1: W (x)1  W (x)3 

P2:  R (x)1 W (x)2 

P3:  R (x)1   R (x)3 R (x)2 

P4:  R (x)1   R (x)2 R (x)3 
 
Why is this not allowed by sequential consistency?   
 

Why is this allowed by causal consistency? 
 
 

What is the violation of causal consistency in the sequence below? 

P1: W (x)1 

P2:  R (x)1 W (x)2 

P3:    R (x)2 R (x)1 

P4:    R (x)1 R (x)2 
 
 
 

Without the R (x)1 by P2 causally 
consistent. 

Implementing causal consistency requires the construction of a 
dependency graph, showing which operations depend on which other 
operations.   

 

Processor consistency 

Causal consistency requires that all processes see causally related 
writes from all processors in the same order. 

The next step is to relax this requirement, to require only that writes 
from the same processor be seen in order.  This gives processor 
consistency. 



 
 

Lecture 19 Architecture of Parallel Computers 5 
 

Processor consistency:  Writes performed by a single processor are 
received by all other processors in the order in which they were issued. 

Writes from different processors may be seen in a different order by 
different processors. 

Processor consistency would permit this sequence that we saw 
violated causal consistency:

P1: W (x)1 

P2:  R (x)1 W (x)2 

P3:    R (x)2 R (x)1 

P4:    R (x)1 R (x)2 
 
Another way of looking at this model is that all writes generated by 
different processors are considered to be concurrent. 

Note:  Some definitions of processor consistency require cache 
coherence too.  Processor consistency without cache coherence is 
called PRAM consistency. 

Exercise:  What is the strongest consistency model that each of the 
following satisfy? 

P1: W (x)1 

P2:  R (x)1 W (x)2 

P3:    R (x)1 R (x)2 

P4:    R (x)2 R (x)1 
 

P1: W (y)1 

P2:  R (x)1 W (y)2 

P3:    R (y)1 R (y)2 

P4:    R (y)2 R (y)1 
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P1: W (x)1 

P2:  R (x)1 W (y)2 

P3:    R (x)1 R (y)2 

P4:    R (y)2 R (x)1 
 

Sometimes processor consistency can lead to counterintuitive results. 

P1: P2: 

a = 0; 
  : 
a = 1; 
if (b == 0)  
 kill(p2); 

b = 0; 
  : 
b = 1; 
if (a == 0) 
 kill(p1); 

At first glance, it seems that no more than one process should be 
killed.   

With processor consistency, however, it is possible for both to be 
killed.  Explain how. 

What processor consistency guarantees 

 SC ensures ordering of  
o LD  LD  
o LD  ST 
o ST  LD 
o ST  ST 

 PC removes the ST LD constraint, with significant implications 
for ILP: 

o Values can be loaded into other caches, even 
store to the same location in some write buffer. 

o Loads do not wait for stores to , they 
access the cache right away (without being speculative!). 

o A load dependent on an older store (in the same 
processor)  
before it is stored). 

 PC also removes write atomicity. 
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 How close is PC to  

o Most of the time, very close (e.g., post-wait 
synchronization works correctly)  

o Major OSes are ported to PC with relative ease 

 Cases that cause errors in PC usually are due to races that 
also happen in SC. 

o However, debugging races in PC is more difficult. 

Weak ordering 

Processor consistency is still stronger than necessary for many 
programs, because it requires that writes originating in a single 
processor be seen in order everywhere. 

But it is not always necessary for other processors to see writes in 
order or even to see all writes, for that matter. 

Suppose a processor is in a tight loop in a critical section, reading 
and writing variables. 

process exits its critical section. 

Load 

Load 

Store 

Store 

Load 
Program 
execution 

This load 
bypasses 
2 stores 

P1:  
data = 
2000; 
flag = 1; 

P2:  
while (flag == 0) {};  
print data;

P1:  
flag1 = 1;  
if (flag2 == 0)  
   

P2:  
flag2 = 1;  
if (flag1 == 0)  
   

PC fails to produce SC results, because PC does 
not guarantee ordering betw. store & younger load 

PC produces SC results, because  
ordering between 2 stores is preserved. 

Implications 
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Under processor consistency, the memory has no way of knowing 
that other processe
propagate all writes to all other processors in the normal way. 

To relax our consistency model further, we have to divide memory 
operations into two classes and treat them differently. 

 Accesses to synchronization variables are sequentially consistent. 

 Accesses to other memory locations can be treated as concurrent. 

This strategy is known as weak ordering. 

during a critical section. 

We can just wait until the process exits its critical section, and then  

 make sure that the results are propagated throughout the 
system, and 

 stop other actions from taking place until this has happened. 

Similarly, when we want to enter a critical section, we need to make 
sure that all previous writes have finished. 

These constraints yield the following definition: 

Weak ordering:  A memory system exhibits weak ordering iff  

1. Accesses to synchronization variables are sequentially 
consistent. 

2. No access to a synchronization variable can be performed until 
all previous writes have completed everywhere. 

3. No data access (read or write) can be performed until all 
previous accesses to synchronization variables have been 
performed. 

Thus, by doing a synchronization before reading shared data, a 
process can be assured of getting the most recent values written by 
other processes before their immediately preceding Ss. 
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Note that this model does not allow more than one critical section to 
execute at a time, even if the critical sections involve disjoint sets of 
variables. 

This model puts a greater burden on the programmer, who must 
decide which variables are synchronization variables. 

Weak ordering says that memory does not have to be kept up to date 
between synchronization operations. 

This is similar to how a compiler can put variables in registers for 

are written back. 

If there were any possibility that another process would want to read 
these variables, th  

This shows that processes can live with out-of-date values, provided 
that they know when to access them and when not to. 

The following is a legal sequence under weak ordering.  Can you 
explain why? 

P1: W (x)1 W (x)2 S 

P2:   R (x)2 R (x)1 S 

P3:   R (x)1 R (x)2 S 
 

 
 

Why? 

P1: W (x)1 W (x)2 S 

P2:   S R (x)1 
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Release consistency 

Weak ordering does not distinguish between entry to critical section 
and exit from it. 

Thus, on both occasions, it has to take the actions appropriate to 
both: 

 making sure that all locally initiated writes have been 
propagated to all other memories, and 
 
 
 

 making sure that the local processor has seen all previous 
writes anywhere in the system. 
 
 
 
 

Load/Store 
: 

Load/Store 

Sync

Load/Store 
: 

Load/Store 

Sync

Load/Store 
: 

Load/Store 

Synch may be implemented as a lock 
acquire/release 
 
Before a synch, all previous ops must finish. 
Before any ld/st, all previous synch must finish. 

Why safe? Typically within a critical section, we have 
made sure that only one process is inside, thus safe 
to reorder anything in the critical section. 

Outside a critical section, we usually do not care 
about the order of mem ops (we would have used 
synchronization if we had cared). 

How to know whether a particular ld/st serves as a 
synchronization point?  

 Assume all atomic instructions are 
synchronization points 

o fetch-and-op, test-and-set 
 Assume all load linked (LL) and store conditional 

(SC) are synchronization points 
 

P1 

P2 
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If the memory could tell the difference between entry and exit of a 
critical section, it would only need to satisfy one of these conditions. 

Release consistency provides two operations: 

 acquire operations tell the memory system that a critical section 
is about to be entered. 

 release operations say a c. s. has just been exited. 

It is possible to acquire or release a single synchronization variable, 
so more than one critical section can be in progress at a time. 

When an acquire occurs, the memory will make sure that all the local 
copies of shared variables are brought up to date. 

When a release is done, the shared variables that have been 
changed are propagated out to the other processors. 

But  

 doing an acquire does not guarantee that locally made changes 
will be propagated out immediately. 

 doing a release does not necessarily import changes from other 
processors. 

Here is an example of a valid event sequence for release consistency 
(A Q  

P1: A (L) W (x)1 W (x)2 Q (L ) 

P2:     A (L)R (x)2 Q (L ) 

P3:         R (x)1 
 
Note that since P3 has not done a synchronize, it does not 
necessarily get the new value of x. 

Release consistency:  A system is release consistent if it obeys 
these rules: 

1. Before an ordinary access to a shared variable is performed, all 
previous acquires done by the process must have completed. 
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2. Before a release is allowed to be performed, all previous reads 
and writes done by the process must have completed. 

3. The acquire and release accesses must be processor 
consistent. 

If these conditions are met, and processes use acquire and release 
properly, the results of an execution will be the same as on a 
sequentially consistent memory. 

Summary:  Sequential consistency is possible, but costly.  The model 
can be relaxed in various ways. 
Consistency models not using synchronization operations:  

Type of 
consistency 

Description 

Sequential All processes see all shared accesses in same 
order. 

Causal All processes see all causally related shared 
accesses in the same order. 

Processor All processes see writes from each processor in 
the order they were initiated.  Writes from different 
processors may not be seen in the same order, 
except that writes to the same location will be seen 
in the same order everywhere. 

Consistency models using synchronization operations: 

Type of 
consistency 

Description 

Weak Shared data can only be counted on to be 
consistent after a synchronization is done. 

Release Shared data are made consistent when a critical 
region is exited. 
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The following diagram contrasts various forms of consistency. 

Sequential 
consistency 

Processor 
consistency 

Weak 
ordering 

Release 
consistency 

R 
 

W 

R 
 

R 
 

W 
: 
: 

R 
 

R 

W 
 

{W, R} 
: 
: 

{M, M} 
 

SYNCH 

{M, M} 
 

SYNCH 
: 
: 

{M, M} 

ACQUIRE 

{M, M} 
 

RELEASE 

    
 

 
 

 
 {M, M} 
     
RELEASE

 
 RELEASE 
   : 
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Scalable Multiprocessors

[§10.1]  A scalable system is one in which resources can be added to 
the system without reaching a hard limit. 

What does scalability mean? 

• Avoids inherent design limits on resources. 
• Bandwidth increases with # of processors p. 
• Latency does not. 
• Cost increases slowly with p. 

Why doesn’t a bus-based design scale? 

 Physical constraints  
  

 Protocol constraints  
 

 Contention everywhere: bus, snooper, memory 

Scalability and coherence 

All of the cache-coherent systems we have talked about until now 
have had a bus. 

Not only does the bus guarantee serialization of transactions; it also 
serves as a convenient broadcast mechanism to assure that each 
transaction is propagated to all other processors’ caches. 

How can cache coherence can be provided on a machine with 
physically distributed memory and no globally snoopable 
interconnect? 

 To support a shared address space? 

 To be able to satisfy a cache miss transparently from local or 
remote memory? 

This means data is replicated widely.  How can it be kept coherent? 
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Scalable network

CA

P

$

Switch

M

Switch Switch

 

Scalable distributed memory machines consist of P-C-M nodes 
connected by a network. 

The communication assist interprets network transactions and forms 
the interface between the processor and the network. 

A coherent system must do these things. 

 Provide a set of states, a state-transition diagram, and actions. 

 Manage the coherence protocol. 

(0)  Determine when to invoke the coherence protocol 

(a)  Find a source of information about the state of this block 
in other caches.   
 

(b)  Find out where the other copies are 

(c)  Communicate with those copies (invalidate/update) 

(0) is done the same way on all systems 

• The state of the line is maintained in the cache 

• The protocol is invoked if an “access fault” occurs on the line. 

The different approaches to scalable cache coherence are 
distinguished by their approach to (a), (b), and (c). 
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Bus-based coherence 

In a bus-based coherence scheme, all of (a), (b), and (c) are done 
through broadcast on bus. 

• The faulting processor sends out a “search.”  

• Other processors respond to the search probe and take 
necessary action. 

We could do this in a scalable network too—broadcast to all 
processors, and let them respond.  Why don’t we?   
 

Why not?  On a scalable network, every fault leads to at least  p 
network transactions. 

P
ro

to
co

l 

 Interconnection 

Bus Point-to-point 

Snoopy Least scalable More scalable 

Directory — Most scalable 

 
Directory-based protocol 

 Instead of broadcasting to find out who has the block, keep 
track of copies in the directory. 

 Invalidation requests must be sent (individually) to all sharers; 
can you explain why this doesn’t render the protocol too slow?   
 
  

 Used with distributed shared memory (DSM) multiprocessors 

 Can scale to tens or hundreds of processors. 
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How to map memory on a DSM? 

 Block interleaving? 

o distributes data 
around 

o hard to exploit 
spatial locality 

 

 
 
 No interleaving? 

 
[pfr = page frame] 
 
Of course, the OS 
is responsible for 
placing pages in 
page frames. 

 
 
 The OS must be involved in deciding where to allocate a page.  

Answer these questions …  

 How are pages typically replaced on a uniprocessor?   
 

 Why is the decision different on a multiprocessor?   
 

 Why is “first touch” a sensible policy for many situations?   
 

 Why is “first touch” grossly suboptimal for many parallel 
algorithms?   
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 What is an alternative allocation policy that often works well?   
 

 
Handling misses in directory-based coherence 

The basic idea of a directory-based approach is this. 

• Every memory block has associated directory information;  
it keeps track of copies of cached blocks and their states. 

• On a miss, it finds the directory entry, looks it up, and 
communicates only with the nodes that have copies (if 
necessary). 

In scalable networks, communication with the directory and with 
copies occurs through network transactions. 

Let us assume that the directory is distributed, with each node 
holding directory information for the blocks it contains. 

This node is called the home node for these blocks. 

What happens on a read miss? 
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P

A M/D

C

P

A M/D

C

P

A M/D

C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2.

3.

4a.

4b.

Requestor

Node with
dirty copy

Directory node
for block

 

The requesting node 
sends a request 
transaction over the 
network to the home 
node. 

The home node 
responds with the 
identity of the 
owner—the node that 
currently holds a valid 
copy of the block. 

The requesting node 
then gets the data 
from the owner, and 
revises the directory 
entry accordingly. 

On a write 
miss, the 
directory 
identifies 
copies of 
the block, 
and invali-
dation or 
update 
messages 
may be 
sent to the 
copies. 

P

A M/D

C
P

A M/D

C

P

A M/D

C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1.

2.

P

A M/D

C

Inval. req.
to sharer

Inval. ack Inval. ack

3a. 3b.

4a. 4b.

Requestor

Directory node

Sharer Sharer
 

Now, see if you can tell how many directory messages are needed in 
each of several cases. 
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One major difference from bus-based schemes is that we can’t 
assume that a write has  
 

What information will be held in the directory? 

• There will be a dirty bit telling if the block is dirty in some cache. 

• Not all state information (MESI, etc.) needs to be kept in the 
directory, only enough to determine what actions to take. 

 Sometimes the state information in the directory will be out of 
date.  Why?   
 

 So, sometimes a directory will send a message to the cache 
that is no longer correct when it is received. 

Flat vs. hierarchical directories 

When a miss occurs, how do we find the directory information?  
There are two main alternatives. 

 A flat directory scheme.  Directory information is in a fixed 
place, usually at the home (where the memory is located). 

o On a miss, a transaction is sent to the home node. 

 A hierarchical directory scheme.  Directory information is 
organized as a tree, with the processing nodes at the leaves. 

o Each node keeps track of which, if any, of its (immediate) 
children have a copy of the block. 

o When a miss occurs, the directory information is found by 
traversing up the hierarchy level until the block is found 
(in the “appropriate state”). 

o The state indicates, e.g., whether copies of the block exist 
outside the subtree of this directory. 



Lecture 20 Architecture of Parallel Computers 8 

 

How do flat schemes store information about copies? 

   Memory-based schemes store the information about all cached 
copies at the home node of the block.  E.g., Dash, Alewife, SGI 
Origin.    

 Cache-based schemes distribute information about copies among 
the copies themselves.  E.g., IEEE SCI, Sequent NUMA-Q. 

o The home contains a pointer to one cached copy of the 
block. 

o Each copy contains the identity of the next node that has 
a copy of the block. 

This means that the copies are located through network transactions. 

P

Cache

P

Cache

P

Cache

Main Memory
(Home)

Node 0 Node 1 Node 2

 

Centralized Distributed 

Hierarchical Flat 

Memory-based Cache-based 

Directory Schemes 

How to find source of 
directory information 

How to locate copies 

DASH, Origin 
Alewife, HAL 

SCI,  
Sequent NUMA-Q 

bad for scalability (why not 
bus?) 
mostly early machines 
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When do hierarchical schemes outperform flat schemes?   
 
 

Why might hierarchical schemes be slower than flat schemes?   
 

Summary 

Flat Schemes: 

• Issue (a): finding source of directory data 
• go to home, based on address 

• Issue (b): finding out where the copies are 
• memory-based: all info is in directory at home 
• cache-based: home has pointer to first element of distributed 

linked list 

• Issue (c): communicating with those copies 
• memory-based: point-to-point messages (perhaps coarser 

on overflow) 
– can be multicast or overlapped 

• cache-based: part of point-to-point linked list traversal  to 
find them 

– serialized 
 

Hierarchical Schemes: 
• all three issues through sending messages up and down 

tree 
• no single explict list of sharers 
• only direct communication is between parents and children 

Distributing the directory 

The directory needs to be distributed, but how many “pieces” should 
there be, and where should they be located? 

Classical DSM 

P-C-M nodes (p. 2, above) are connected to form a distributed 
shared memory system. 
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LL cache miss  request to directory determined by PFA of block 

Directory is located at the same node as the block.  Why?   
 

 

Multicore with coherent LLCs 

Directory entries point to cache blocks, not main memory! 

If the LLC misses, block can be fetched from another cache. 

If it’s not cached, then it needs to go through a memory controller 
(MC) to fetch it from main memory. 

The number of memory controllers is limited by pin count, which may 
cause bottlenecks. 

 

Multicore with coherent non-LLCs 

In the diagram below, 

 the L3 cache is “physically distributed but logically shared,” and 
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 the L2 caches are kept coherent. 

L2 miss  L3 directory searched, block retrieved from L3 or memory 

 

In this case, the directory can be merged with the L3 tag array! 

Not only does the L3 tag tell which block the L3 line holds, but also  
 

Benefit: Lower miss latency for L2 and L3. 

Drawback: Directory can hold only as many entries as there are lines 
in the L3. 

So the L3 cache has to include all blocks cached in the L2.  Why?   
 



 
 

Lecture 21 Architecture of Parallel Computers 1 
 

Basic DSM Cache Coherence 

[§10.3]  Let us start off by considering a full bit-vector approach. 

 

For each block of memory, assuming there are k processors, it 
maintains at the home node of the block … 

 k presence bits p[..] 
 1 dirty bit D 

Cache state is represented the same way as in bus-based designs 
(MSI, MESI, etc.). 

 On a read by processor i, the home node reacts this way:  

 If (D == 0) { supply data; p[i ] = 1; } 

 else { send intervention to owner; update home; D = 0; 
p[i] = 1; supply data to i;} 

 On a write by processor i; tell how the home reacts:  

 On a write by processor i; tell how the home reacts:  

o if (D == 0) {       ; D = 1; p[i]=1; 
supply data to node i; } 

o else {       ; p[owner] = 0;  
p[i ] = 1 ; supply data to i;} 

• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network
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On the replacement of a dirty block by node i, the data is written back 
to memory and the directory is updated to turn off the dirty bit and p[i]. 

On the replacement of a shared block, the directory may or may not 
be updated.   
 

How does a directory help?  It keeps track of which nodes have 
copies of a block, eliminating the need for     . 

Would directories be valuable if most data were shared by most of 
the nodes in the system?   
 
 
 
 
Fortunately, the number of valid copies of data on most writes is 
small. 

The attached animation uses the MESI protocol, with 3 block states 
in main memory: 

 EM (exclusive or modified)   
 S (shared) 
 U (unowned)   

 
 Network transactions for coherence 

o Read: read request  

o ReadX: read exclusive (or write) request 

o Upgr: upgrade request 

o ReplyD: home replies with data to requestor 

o Reply: home replies to requestor with IDs of sharers 

o Inv: home asks sharer to invalidate 

o WB+Inv: home asks owner to flush and invalidate 
o WB+Int: home asks owner to flush and change to S 

o Flush: owner flushes data to home + requestor 

o InvAck: sharer/owner acks an invalidation msg 

o Flush+InvAck: Flush, piggybacking an InvAck message   
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 Notation 

o Transaction (Source  Destination) 

o H = Home node 

The following example is used in the animation: 

Proc 
action 

P1 
state 

P2 
state 

P3 
state 

Dir state 
@home Network messages 

# of 
hops 

R1 E – – EM, 100 
Read (P1  H),  
ReplyD (H  P1) 

2 

W1 M – – EM, 100 — 0 

R3 S – S S, 101 
Read (P3  H),  
WB+Int (H  P1), 
Flush (P1  H, P3) 

3 

W3 I – M EM, 001 

Upgr (P3  H), 
Reply (H  P3) //  
Inv (H  P1), 
InvAck(P1  P3) 

3 

R1 S – S S, 101 
Read (P1  H),  
WB+Int (H  P3), 
Flush (P3  H, P1) 

3 

R3 S – S S, 101 — 0 

R2 S S S S, 111 
Read (P2  H), 
ReplyD (H  P2) 

2 

Scaling with number of processors 

In order for directory schemes to be practical, they must scale 
gracefully. 

• Scaling of memory and directory bandwidth 

 Centralized directory is bandwidth bottleneck, just like 
centralized memory. 
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 How can we maintain directory information in a 
distributed way? 

• Scaling of performance characteristics 

 traffic: # of network transactions each time protocol is 
invoked 

 latency: # of network transactions in critical path each 
time 

• Scaling of directory storage requirements 

 Number of presence bits needed grows as the number 
of processors. 

 E.g., 64-byte block size and 1024 processors.  How 
many bits in block, vs. # of bits in directory?   
 

Directory organization affects all of these issues. 

Organizing a memory-based directory scheme 

All info about copies is colocated with 
the block itself at the home 

This works just like a centralized 
scheme, except that it is distributed. 

Scaling of performance characteristics 

• Traffic on a write is proportional 
to number of sharers. 

• Latency?  Can issue invalidations 
in parallel. 

P

M

 

Scaling of storage overhead?  Assume representation is a full bit-
vector.   

Optimizations for full bit-vector schemes 
• Increase  (1)  size (reduces storage overhead 

proportionally). 
• Use multicore nodes (one bit per multicore node, not per 

processor) 
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• still scales as pm, but only a problem for very large 
machines 

– 256 procs, 4 per chip, 128B line:   (2) % o’head 
 

p term 
• Observation: most blocks are cached by only few nodes 
• Instead of keeping a bit per node, make entry contain a few  

 (3) . 
If p = 1024, 10-bit     can use 100    and 
still save space. 

• Sharing patterns indicate a few pointers should suffice (five 
or so). 

• We also need an overflow strategy for when there are more 
sharers than pointers. 

 
m term. 

• Observation: number of memory blocks >> number of cache 
lines. 

• Thus, most blocks will not be cached at any particular time; 
therefore, most directory entries are useless at any given 
time 
• organize directory as a cache, rather than having one 

entry per memory block  (key is  (4) , value is  (5)   ) 
 

Organizing a cache-based directory scheme. 

In a cache-based scheme, the home node only holds a pointer to the 
rest of the directory information. 

The copies are linked together via a distributed list that weaves 
through caches. 

Each cache tag has a pointer that points to the next cache with a 
copy. 

• On a read, a processor adds itself to the head of the list 
(communication needed). 

• On a write, it makes itself the head node on the list, then 
propagates a chain of invalidations down the list. 
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 Each invalidation must be acknowledged. 

• On a write-back, the node must delete itself from the list (and 
therefore communicate with the nodes before and after it). 

Disadvantages:  All operations require communicating with at least 
three nodes (node that is being operated on, previous node, and next 
node). 

Write latency is proportional to number of sharers. 

Synchronization is needed  
 

Advantages:  Directory overhead is small.   
 

Work of performing invalidations can be distributed among sharers. 

The IEEE Scalable Coherent Interface has formalized protocols for 
handling cache-based directory schemes.   
 

The SSCI protocol 

 SCI (Scalable Coherence Interface) protocol 

o IEEE standard, ratified in 1993 

o 7 state bits, 29 stable states + many pending states 

 For illustration we will use Simple SCI (SSCI) 

o Retains similarity with full-bit vector protocol:  

 MESI states in the cache 
 U, S, EM states in the memory directory 
 Replaces the presence bits with a pointer 

o Similar features to SCI 

 Overall protocol operation 
 Doubly linked list 

o Many possible race conditions, which are mostly ignored 
in the illustration 
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 Additional coherence network transactions (in addition to those 
used in full bit-vector approach): 

o WB+Int+UpdPtr 

o UpdPtr: update next/prev/head pointers 

Here is the example used in the animation. 
 

Proc 
action 

P1 
state  

P2 
state 

P3 
state 

Dir 
state 

@home 
Network message 

# of 
hops 

R1 E,0,0 – – EM, 1 
Read (P1  H),  
ReplyD (H P1) 

2 

W1 M,0,0 – – EM, 1 — 0 

R3 S,3,0 – S,0,1 S, 3 

Read (P3  H),  
Reply (H  P3), 
WB+Int+UpdPtr (P3 P1), 
Flush (P1  H, P3) 

4 

W3 I,3,0 – M,0,0 EM, 3 
Upgr (P3  H) //  
Inv (P3  P1)  
InvAck(P1  P3) 

2 

R1 S,0,3 – S,1,0 S, 1 

Read (P1  H),  
Reply (H  P1), 
WB+Int+UpdPtr (P1 P3), 
Flush (P3  H, P1) 

4 

R3 S,0,3 – S,1,0 S, 1 — 0 

R2 S,2,3 S,0,1 S,1,0 S, 2 
Read (P2  H), 
ReplyD/ID (H  P2),  
UpdPtr (P2  P1) 

3 
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Full Bit-Vector Visualization – Start State

1

Start state. All caches empty 
and main memory has A = 1 in 
state U. Bit vector is 000.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 U 000
Main memoryMain memory

Directory

Edited by Samuel Christie and Amey Deshpande
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Full Bit-Vector: Processor P1 Reads A

2

Processor P1 attempts to 
read A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 U 000
Main memoryMain memory

Directory
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Full Bit-Vector: Processor P1 Reads A

3

P1’s cache sends a Read
request to the home 
directory.  BV is set to 100.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
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Full Bit-Vector: Processor P1 Reads A

4

Directory replies with value 
of A and the state of A in 
P1’s cache is set to E.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd  &ARd  &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

Main memoryMain memory

Directory

A = 1 E

AA = 1 EM 100
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Full Bit-Vector: Processor P1 Reads A

5

Processor P1’s read 
completes.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

A = 1 E
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Full Bit-Vector: Processor P1 Writes A

6

Processor P1 attempts to write 
A=2 in its cache. Value is 
modified and state is set to M.

P1

CacheCache
A = 2 M

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Wr A, #2Wr A, #2
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7

Processor P1 completes 
writing A=2 to its cache.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

A = 2 M

Full Bit-Vector: Processor P1 Writes A
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8

Processor P3 attempts to 
read A from its cache, 
misses.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd  &ARd  &A
P3P3 ReadRead
DirDir WB+INTWB+INT
P1P1 FlushFlush

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

A = 2 M

Full Bit-Vector: Processor P3 Reads A

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P3 Reads A

9

P3’s cache sends Read
request to home directory.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd  &ARd  &A
P3P3 ReadRead
DirDir WB+INTWB+INT
P1P1 FlushFlush

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

A = 2 M
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Full Bit-Vector: Processor P3 Reads A

10

Directory sends owning 
cache a WB+Int. Owner P1
changes state to S.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd &ARd &A
P3P3 Read Read 
DirDir WB+IntWB+Int
P1P1 FlushFlush

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 100
Main memoryMain memory

Directory

A = 2A = 2 S
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Full Bit-Vector: Processor P3 Reads A

11

P1 flushes the block. Directory 
and P3 update the block and 
set state = S. BV is set to 101.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd &ARd &A
P3P3 Read Read 
DirDir WB+INTWB+INT
P1P1 FlushFlush

P1

CacheCache

P2

CacheCache

P3

CacheCache
A=2 S

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 101
Main memoryMain memory

Directory

A = 2A = 2 S
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Full Bit-Vector: Processor P3 Reads A

12

Processor P3 completes 
read operation from its 
cache.

P1

CacheCache
A = 2 S

P2

CacheCache

P3

CacheCache
A = 2 S

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 101
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A
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InvAckInvAckP1P1

Full Bit-Vector: Processor P3 Writes A

13

Processor P3 attempts to 
write A in its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache
A = 2 S

P2

CacheCache

P3

CacheCache
A = 2 S

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 101
Main memoryMain memory

Directory
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P1P1 InvAckInvAck
14

P3 sends Upgr request to the 
directory.  BV is set to 001, as 
P3 becomes the owner.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache
A = 2 S

P2

CacheCache

P3

CacheCache
A = 2 S

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 EM 001
Main memoryMain memory

Directory

Full Bit-Vector: Processor P3 Writes A
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P1P1 InvAckInvAck
15

Directory sends Inv to P1
and Reply to P3. 
P1 invalidates block. 

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache
A = 2 S

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

Full Bit-Vector: Processor P3 Writes A
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P1P1 InvAckInvAck
16

Processor P1 sends InvAck
and P3 proceeds with the 
write, becomes owner.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache
A = 3 M

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

Full Bit-Vector: Processor P3 Writes A
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17

Processor P3 completes 
writing A=3 to its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

A = 3 M

Full Bit-Vector: Processor P3 Writes A
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P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

Full Bit-Vector: Processor P1 Reads A

18

Processor P1 attempts to 
read A from its cache, 
misses.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd  &ARd  &A
P1P1 ReadRead
DirDir WB+INTWB+INT
P3P3 FlushFlush

A = 3 M
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Full Bit-Vector: Processor P1 Reads A

19

P1’s cache sends Read 
request to home directory.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd  &ARd  &A
P1P1 ReadRead
DirDir WB+INTWB+INT
P3P3 FlushFlush

P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

A = 3 M
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Full Bit-Vector: Processor P1 Reads A

20

Directory sends WB+Int to 
the owner cache. The owner 
is downgraded to state S.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd  &ARd  &A
P1P1 ReadRead
DirDir WB+IntWB+Int
P3P3 FlushFlush

P1

CacheCache
A = 2 I

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 001

A = 3 S
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Full Bit-Vector: Processor P1 Reads A

21

P3 flushes the block to the dir-
ectory and P1’s cache.  State 
is set to S.  BV is set to 101.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd  &ARd  &A
P1P1 ReadRead
DirDir WB+INTWB+INT
P3P3 FlushFlush

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S
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Full Bit-Vector: Processor P1 Reads A

22

Processor P1 completes 
reading A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S
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Full Bit-Vector: Processor P3 Reads A

23

Processor P3 attempts to 
read A from its cache, hits.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd  &ARd  &A
P3P3 returns datareturns data

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S
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Full Bit-Vector: Processor P3 Reads A

24

P3’s cache returns the value 
of A immediately.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd  &ARd  &A
P3P3 returns datareturns data

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S
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Full Bit-Vector: Processor P3 Reads A

25

Processor P1 completes 
reading A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P2 Reads A

26

Processor P2 attempts to 
read A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P2P2 Rd  &ARd  &A
P2P2 ReadRead
DirDir ReplyDReplyD

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 101

A = 3 S

CSC/ECE 506: Architecture of Parallel Computers

Full Bit-Vector: Processor P2 Reads A

27

P2’s cache sends a Read 
request to its directory. 
BV is set to 111.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P2P2 Rd  &ARd  &A
P2P2 ReadRead
DirDir ReplyDReplyD

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S

A = 3 S

111
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Full Bit-Vector: Processor P2 Reads A

28

Directory returns the block 
and state with ReplyD.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P2P2 Rd  &ARd  &A
P2P2 ReadRead
DirDir ReplyDReplyD

P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 111

A = 3 SA = 3 S
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P1

CacheCache
A = 3 S

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 111

A = 3 S

Full Bit-Vector: Processor P2 Reads A

29

Processor P2 finishes Read  
operation. 

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

A = 3 S

CSC/ECE 506: Architecture of Parallel Computers

SSCI Visualization – Start State

30

Start state. All caches empty 
and main memory has A = 1 in 
state U.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 U 0
Main memoryMain memory

Directory
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SSCI: Processor P1 Reads A
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Processor P1 attempts to 
read A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 U 0
Main memoryMain memory

Directory
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SSCI: Processor P1 Reads A
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P1’s cache sends a Read 
request to the home 
directory. 

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd &ARd &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
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SSCI: Processor P1 Reads A

33

Directory replies with value of A 
and the state of A in P1’s cache 
is set to E. The cache line con-
tains fields state, prev, and next

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd  &ARd  &A
P1P1 ReadRead
DirDir ReplyDReplyD

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

Main memoryMain memory

Directory

A = 1
E,0,0

AA = 1 EM 1
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SSCI: Processor P1 Reads A
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Processor P1’s read 
completes.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

A = 1
E,0,0
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SSCI: Processor P1 Writes A
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Processor P1 attempts to write 
A=2 in its cache. Block is 
modified and state is set to M.

P1

CacheCache
A = 2 
M,0,0

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Wr A, #2Wr A, #2

CSC/ECE 506: Architecture of Parallel Computers

36

Processor P1 completes 
writing A=2 to its cache.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

A = 2
M,0,0

SSCI: Processor P1 Writes A
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37

Processor P3 attempts to 
read A from its cache, 
misses.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd  &ARd  &A
P3P3 ReadRead

P3P3 WB+INT+UpdPtrWB+INT+UpdPtr
P1P1 FlushFlush

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

SSCI: Processor P3 Reads A

DirDir ReplyReply

A = 2
M,0,0
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P3P3 Rd  &ARd  &A

SSCI: Processor P3 Reads A
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P3 cache sends Read 
request to home directory.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

P3P3 WB+INT+UpdPtrWB+INT+UpdPtr
P1P1 FlushFlush

DirDir ReplyReply
P3P3 ReadRead

A = 2
M,0,0
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P3P3 ReadRead
P3P3 Rd  &ARd  &A

SSCI: Processor P3 Reads A

39

Directory sends Reply to P3.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

P3P3 WB+INT+UpdPtrWB+INT+UpdPtr
P1P1 FlushFlush

DirDir ReplyReply

A = 2
M,0,0
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DirDir ReplyReply

SSCI: Processor P3 Reads A

40

P3 sends owning cache a 
WB+Int+UpdPtr.  
Owner P1 changes state to 
S, with prev pointer to P3

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 1 EM 1
Main memoryMain memory

Directory

A = 2
S,3,0

P3P3 Rd  &ARd  &A
P3P3 ReadRead

P1P1 FlushFlush
P3P3 WB+Int+UpdPtrWB+Int+UpdPtr
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P3P3 WB+INT+UpdPtrWB+INT+UpdPtr

SSCI: Processor P3 Reads A

41

P1 flushes the block. 
Directory state changes to 
S,3 and P3’s state changes 
to S with next pointing to P1

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache
A=2

S,0,1

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 3
Main memoryMain memory

Directory

A = 2
S,3,0

DirDir ReplyReply

P3P3 Rd  &ARd  &A
P3P3 ReadRead

P1P1 FlushFlush
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SSCI: Processor P3 Reads A
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Processor P3 completes 
read operation from its 
cache.

P1

CacheCache
A = 2
S,3,0

P2

CacheCache

P3

CacheCache
A = 2
S,0,1

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 3
Main memoryMain memory

Directory

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A
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InvAckInvAckP1P1

SSCI: Processor P3 Writes A
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Processor P3 attempts to 
write A, which is in its 
cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 S 3
Main memoryMain memory

Directory

A = 2
S,3,0

A = 2
S,0,1
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P1P1 InvAckInvAck
44

Processor P3 sends Upgr
request to the directory. 

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2 EM 3
Main memoryMain memory

Directory

SSCI: Processor P3 Writes A

A = 2
S,3,0

A = 2
S,0,1
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P1P1 InvAckInvAck
45

Directory sends Inv to P1
and Reply to P3. 
P1 invalidates block. 

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache

I,3,0

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

SSCI: Processor P3 Writes A

A = 2 A = 2
S,0,1
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P1P1 InvAckInvAck
46

Processor P1 sends InvAck
and P3 proceeds with the 
write, becomes owner.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Wr &AWr &A
P3P3 UpgrUpgr
DirDir Inv, ReplyInv, Reply

P1

CacheCache
A = 2
I,3,0

P2

CacheCache

P3

CacheCache
A = 3
M,0,0

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

SSCI: Processor P3 Writes A
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47

Processor P3 completes 
writing A=3 to its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

A = 3
M,0,0

SSCI: Processor P3 Writes A

A = 2
I,3,0
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P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

SSCI: Processor P1 Reads A
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Processor P1 attempts to 
read A from its cache, 
misses.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1P1 Rd  &ARd  &A
P1P1 ReadRead

P1P1 WB+INT+UpdPtrWB+INT+UpdPtr
P3P3 FlushFlush

DirDir ReplyReply

A = 3
M,0,0

A = 2
I,3,0
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SSCI: Processor P1 Reads A
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P1 cache sends Read 
request to home directory.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

P1P1 Rd  &ARd  &A

P1P1 WB+INT+UpdPtrWB+INT+UpdPtr
P3P3 FlushFlush

DirDir ReplyReply
P1P1 ReadRead

A = 3
M,0,0

A = 2
I,3,0
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SSCI: Processor P1 Reads A
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Directory sends Reply to P1.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

P1P1 Rd  &ARd  &A
P1P1 ReadRead

P1P1 WB+INT+UpdPtrWB+INT+UpdPtr
P3P3 FlushFlush

DirDir ReplyReply

A = 3
M,0,0

A = 2
I,3,0
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SSCI: Processor P1 Reads A
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TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection TopologyInterconnection Topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 2
Main memoryMain memory

Directory

EM 3

S,1,0

P1P1 Rd  &ARd  &A
P1P1 ReadRead

P3P3 FlushFlush

DirDir ReplyReply
P1P1 WB+INT+UpdPtrWB+INT+UpdPtr

P1 sends WB+Int+UpdPtr to 
the owner cache. 
The owner is downgraded 
to state S with prev set to P1

A = 3A = 2
I,3,0
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SSCI: Processor P1 Reads A
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Processor P3 flushes the 
block to the directory and 
P1’s cache.   State is set to 
S with next pointer to P3

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache
A = 3
S,0,3

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,1,0

P1P1 Rd  &ARd  &A
P1P1 ReadRead

P1P1 WB+INT+UpdPtrWB+INT+UpdPtr
DirDir ReplyReply

P3P3 FlushFlush
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SSCI: Processor P1 Reads A
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Processor P1 completes 
reading A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache
A = 3
S,0,3

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,1,0
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SSCI: Processor P3 Reads A
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Processor P3 attempts to 
read A from its cache, hits.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd  &ARd  &A
P3P3 returns datareturns data

P1

CacheCache
A = 3
S,0,3

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,1,0
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SSCI: Processor P3 Reads A

55

P3’s cache returns the value 
of A immediately.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P3P3 Rd  &ARd  &A
P3P3 returns datareturns data

P1

CacheCache
A = 3
S,0,3

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,1,0
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SSCI: Processor P3 Reads A
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Processor P1 completes 
reading A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,0,3

A = 3
S,1,0
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DirDir ReplyD/IDReplyD/ID

SSCI: Processor P2 Reads A
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Processor P2 attempts to 
read A from its cache.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P2P2 Rd  &ARd  &A
P2P2 ReadRead

P2P2 UpdPtrUpdPtr

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 1

A = 3
S,0,3

A = 3
S,1,0
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SSCI: Processor P2 Reads A
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P2’s cache sends a Read 
request to its directory. Head 
in directory is updated.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 2

DirDir ReplyD/IDReplyD/ID

P2P2 Rd  &ARd  &A

P2P2 UpdPtrUpdPtr

P2P2 ReadRead

A = 3
S,0,3

A = 3
S,1,0
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SSCI: Processor P2 Reads A
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Directory returns the block 
and state with ReplyD/ID. 
P2’s state becomes S with 
next pointing to P1.

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 2

A = 3
S,0,1

P2P2 Rd  &ARd  &A
P2P2 ReadRead

P2P2 UpdPtrUpdPtr
DirDir ReplyD/IDReplyD/ID

A = 3
S,0,3

A = 3
S,1,0
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SSCI: Processor P2 Reads A
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P2 sends UpdPtr to P1. 
P1 changes Next pointer to 
point to P2 .

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

P1

CacheCache

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 2

A = 3
S,1,0

A = 3
S,0,1

A = 3
S,2,3

DirDir ReplyD/IDReplyD/ID

P2P2 Rd  &ARd  &A
P2P2 ReadRead

P2P2 UpdPtrUpdPtr
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P1

CacheCache
A = 3
S,2,3

P2

CacheCache

P3

CacheCache

Interconnection topologyInterconnection topology

Main memoryMain memory

Directory

Main memoryMain memory

Directory

AA = 3
Main memoryMain memory

Directory

S 2

SSCI: Processor P2 Reads A
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Processor P2 finishes Read  
operation. 

TraceTrace
P1P1 Read ARead A
P1P1 Write A = 2Write A = 2
P3P3 Read ARead A
P3P3 Write A = 3Write A = 3
P1P1 Read ARead A
P3P3 Read ARead A
P2P2 Read ARead A

A = 3
S,0,1

A = 3
S,1,0



 
 

Lecture 22 Architecture of Parallel Computers 1 
 

Scalable shared-memory multiprocessing and the Silicon Graphics S2MP 
architecture1 (Dan Lenoski):  [20a] Today I'd like to discuss scalable shared-
memory multiprocessing, and the S2MP architecture, which is at the heart of 
SGI's latest multiprocessor. 

Shared-memory multiprocessors, or SMPs, are the most popular form of 
multiprocessing today, because they can handle both parallel and throughput 
workloads. 

They also offer powerful central resources, such as large memories and fast 
secondary storage, that are sharable by a number of processors. 

To date, the drawback of these systems has been their limited scalability and 
high entry cost. 

This talk introduces a new class of computer, the scalable shared-memory 
multiprocessor, which removes the drawbacks of traditional SMP systems. 

Here is an outline of the talk. 

  This introduces the scalable SMP, or SSMP. 

II. Scaling the SMP model.  This focuses on a particular SSMP, the Silicon 
Graphics Origin architecture and its S2MP memory architecture. 

 

IV.  Design issues in Origin. 
design tradeoffs. 

V. Conclusion. 

  
processors available on the market today. 

 Message-passing (MPP), or massively parallel architectures. 
 Cluster of workstations. 
 Shared memory (SMP). 
 Parallel vector (PVP). 

 

                                            
1Video © 1996, University Video Communications.  This video is available from University Video 
Communications, http://www.uvc.com. 
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MPP architecture 

 

Here is the structure of a message-passing, or SMP design, also referred to as a 
distributed memory system.  It consists of a collection of CPU/memory nodes 
that are connected by a high-speed interconnection network. 

The structure of the individual nodes is similar to a standalone 
computer, except that the individual nodes are usually somewhat 
smaller, and most are not connected directly to I/O devices.  
Generally, the packaging is geared to a large processor count. 

 

CM-5, and the Cray T3D and T3E. 

The strength of MPP systems lies in their scalability.  The fact that the nodes are 
small, and are connected by a high-speed interconnection network allows these 
systems to grow to hundreds or thousands of processors. 

The drawback is that programming these systems involves restructuring 
applications into a message-passing style, so programmers have to rewrite their 
application to explicitly manage all communication.   

In addition, performance often suffers, since the overhead of passing a message 
is tens to hundreds of µsec., which is tens to thousands of instructions on a 
modern microprocessor. 

The performance and programming overheads have limited the use of these 
machines to a small user base that can justify the effort of recoding their 
applications in return for the high aggregate computing power of a large MPP. 
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Cluster architecture 

 

Clusters address the volume issues of MPPs by replacing the integrated MPP 
node with standard workstation or SMP nodes.  Some cluster systems are the 

arrays.  These systems are popular because they can leverage the volume of the 
individual nodes to hit better price/performance points. 

The structure of these machines differs from MPPs in the sense that the 
interconnection network connects to the I/O subsystem instead of being 
integrated into the memory bus. 

Physically these machines are generally not as tightly packaged as an MPP 
machine, since the nodes have I/O controllers, disks, etc.  Unfortunately the fact 
that they are less integrated implies that the overhead of communicating 
between the nodes is higher than in an MPP system.  Of course, they suffer from 
the same programming and message-passing overheads as MPP systems. 

SMP architecture 

 

The next class of system, the shared-memory or symmetric multiprocessor, is 
quite different from the first two.  Generally, SMPs combine a number of 
processors and a high-performance bus that provides both high bandwidth and 
low latency to central memory and I/O devices. 

These systems employ snoopy cache coherence to keep processor utilization 
high and reduce bus loading.  There are numerous examples of this class of 
system, ranging from the high-end SGI Power Challenge, Sun Ultraserver and 
DEC Alpha Server to the low-end two- and four-processor PC systems. 
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The SMPs primary advantage is the shared-memory programming model, which 
is a more natural extension to the uniprocessor model than the message-passing 
model.  Shared memory also permits low-latency interprocessor communication. 

Finally, the large central memory and I/O resources in an SMP are directly 
accessible to all processes running on the system, unlike the distributed 
resources of an MPP or cluster. 

PVP architecture 

 

The last class of MP system is the parallel vector processor, or PVP.  PVPs differ 
from the other classes in that they are based on specialized vector processors 
instead of high-volume microprocessors. 

They are also different in that the vector processors operate directly out of a 
high-speed memory without intermediate caches.  They can achieve high 
throughput by hiding the latency to memory by operating on vectors instead of 
individual memory words. 

C90, and T90. 

The high-end vector machines are based on bipolar technology and utilize a very 
high performance interconnection to an SRAM main memory.  This makes PVPs 
unique in that their performance can remain high on codes that cannot use 
caches effectively.  Unfortunately, they also suffer from high cost and low volume 
due to their special-purpose nature. 

PVPs do serve an important niche of scientific applications such as 
computational fluid dynamics codes that need very high performance, but cannot 
utilize caches well. 

[20b] The ideal multiprocessor would combine the best of all of these.  It would 
provide the scalability of MPP systems, the cost economics of cluster-based 
systems, the programming model and tight coupling of an SMP, and the floating-
point performance and high memory bandwidth of PVPs. 
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A scalable SMP restructures the SMP class to incorporate the advantages of the 
other architectures while retaining the programming model and low-latency 
communication of the SMP. 

In this talk, I will focus on how the SSMP incorporates the functions of the MPP, 
cluster, and SMP.  Integrating PVP into the SSMP is primarily a question of per-
processor floating-point performance and memory-latency tolerance, together 
with the amount of memory spent on the memory system to achieve high 
bandwidth. 

SMP.  Its bus structure is key to both its tight integration and cache coherence, 
but is also the inherent limitation on the scalability of the system. 

 The cost of the bus itself limits how small a system can effectively be 
configured. 

 The fixed bandwidth of the bus limits how far the SMP can scale to 
support a large number of processors. 

The first step in the evolution of an SMP is to remove the bus and replace it with 
a switch.  The switch removes the bus bottleneck by giving the system scalable 
bandwidth that can grow as the system grows. 

Switch-based SMP 

 

Further, the switch can be small when the system is small, and grow as the 
system grows. 

An additional change is to the means of cache coherence, since the snoopy 
schemes used on bus-based SMPs rely on broadcasting every memory 
reference to every cache.  This is done by adding directories to memory so that 
the memory knows which processors hold a copy of a memory block; the 

-based coherence in a 
moment. 

The overall effect of replacing the bus with a switch is that the bus bottleneck is 
removed and the system is much more scalable.  We also have increased 
modularity, in the sense that the switch structure can grow as the number of 
processors grows, in order to provide higher performance. 
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But we still have not attained the ideal structure, because the switch adds 
latency and uses shared bandwidth for memory locations that are accessed only 
by a single processor.  The next step is to push portions of the memory through 
the switch, and distribute the shared memory and I/O with the set of processors. 

Distributed shared memory 

 

With the distributed shared memory, or DSM, structure, memory and I/O that has 
an affinity to a set of processors can be accessed with lower latency and does 
not use the shared bandwidth of the global interconnection. 

Memory bandwidth increases naturally as processors are added.  Moreover, 
modularity is greatly increased, because each node is a complete functioning 
unit, and an entry system need not have a global switch at all. 

DSM systems are also referred to as NUMA, or non-uniform memory access, 
machines.  This is in contrast to traditional bus-based SMP or switch-based PVP 
systems, where all memory is equidistant, and there is a uniform memory 
access, or UMA. 

NUMA systems that support caching of local and remote memory are referred to 
as CC-NUMA, for cache-coherent NUMA.  The DSM, or CC-NUMA, system has 
the same basic structure, and thus scalability, as the MPP or workstation cluster.  
The primary difference is that the memory is accessible to all processors directly. 

Furthermore, I/O can be accessed directly by each processor, and I/O devices 
can DMA directly into any portion of memory, as in an SMP.  All that is changed 
from an SMP is that the memory and I/O resources have been distributed along 
with the processors. 

as an array of state information that supplements each bank of data memory. 
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Each memory block, which is a cache-line sized block of memory, typically 32 to 
128 bytes, has an associated directory entry. 

This added state information contains  

 state bits, that indicate whether the particular block is cached, and, if 
cached, whether in a shared read-only state, or an exclusive read-
only state, and 

 pointer information, which indicates which processors have this block 
cached.  In this example, the pointer information is stored as a bit-
vector with each bit representing one processor. 

processors. 

Load to cached/unshared block:  Assume processor 0 starts by doing a load 
from memory on another node. 

 The processor finds that it does not have the data already in its 
cache, and issues a request for a shared copy of the memory block. 

 This request travels to the appropriate memory, based on its 
address, accesses the memory location and directory, and 
determines that the line is either uncached, or cached only for 
reading by other processors. 

 The memory returns a copy of the memory block, and updates the 
directory to indicate that the line is now shared, and that processor 0 
has a shared copy. 

 Other processors can also read this block, updating their sharing or 
presence bit in the directory as well. 
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Store to shared block:  Now assume that processor 7 does a store to the 
memory location. 

 This generates a read-exclusive command that is sent to the memory. 

 The memory receives this command, and uses the information in the 
directory to determine that the line is shared, and which processors 
are sharing the line. 

 The memory then sends invalidation requests to those processors and 
only those processors, and returns the line to the writing processor. 

 The directory transitions to the dirty state, indicating 
that processor 7 has the only up-to-date copy of the 
memory block. 

 
 The invalidate messages also generate acknowledgments to the 

writing processor, so that it can determine when all stale copies have 
been eliminated. 

 Now that the writing processor has exclusive ownership, it can read 
and write the block in its cache without further  memory transactions. 

Load to dirty block:  Upon a subsequent read by another processor, however, the 
reading processor sends its request to memory, and the directory indicates that 
an exclusive copy is held by the writing processor, and that memory is not up to 
date. 

This read request is then sent on to t
cache returns the data to the reading processor, and sends a copy of the data to 
update memory and return the directory to the sharing state. 
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e.  

Write-back and removal from cache:  The other possibility is that the writing 
processor replaces the dirty line in its cache by issuing a write-back request to 
memory. 

This message indicates that the dirty cache is removing its exclusive copy and 
updating the data memory, leaving the directory in the uncached state. 

Importance of directories: 

 Only processors that access a memory block are involved with coherence 
for that block. 

 Thus, the overhead of cache coherence is never more than a fraction of 
the traffic required to access the given memory block if it were never 
cached at all. 

 Memories only communicate with processors, never with one another. 

 Thus, bandwidth to global cache-coherent memory can be scaled with 
directories by simply adding additional memory banks, or, in DSM 
systems, by adding additional nodes to the system. 

[20c] Scaling the SMP model.  The directory structure was originally proposed 
by L. Censier and P. Feautrier in 1978. 

1980s: Commercial cache-coherence schemes were based on snoopy cache 
coherence because snoopy schemes were simpler and placed the burden of 
coherence on the caches themselves. 

Late 1980s: Directory-based cache coherence attracted renewed interest in 
academia when the inherent bottlenecks of bus-based SMP systems began to 
be felt. 

Many universities began programs to investigate scalable systems. 

Another early effort at a directory-protocol implementation was taken on by the 
IEEE Scalable Coherence Interface Working Group.  This group defined an 
interface standard for modules that includes a directory-based cache-coherence 
scheme that could be used to build up SSMP systems out of nodes conforming 
to the SCI standard. 

1991: IEEE Scalable Coherent Interface standard.   

The earliest commercial DSM systems were the Kendall Square Research KSR-
1, introduced in 1991, and the Convex Exemplar SPP-1000, introduced in 1993. 
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These early machines were not very successful, with KSR folding, and Convex 
struggling financially and eventually being acquired by Hewlett-Packard. 

The limited acceptance of these early DSM machines was due to improved bus 
technology that yielded bus-based SMP machines with more than 1 GB/s. of 
memory bandwidth, and to the fact that high-performance switches could only be 
built from expensive bipolar or gallium-arsenide technology at this time. 

Today, the need for higher performance and greater scalability has driven much 
interest in DSM systems.  Technology improvements and commodity CMOS 
have also made such systems much more cost effective. 

Some of the announced second-generation DSM systems include  

 SGIs Origin servers 

 -cube systems, and 

 -Q line. 

 Convex, in conjunction with HP, has announced their second major 
generation of Exemplar DSM systems, the X class. 

Other products are rumored to be in the works from other major computer 
vendors. 

The performance characteristics of a DSM system can greatly affect its usability. 

 DSM ?= scalable SMP? 

 DSM structure similar to that of distributed memory.  Only difference 
is means of accessing interconnection network and remote memory. 

 Difference is support for SMP programming model.  In SMP, 
accesses to remote nodes are supported by hardware. 

 Effectiveness depends on latency and bandwidth to remote memory. 

If a system can achieve high bandwidth and low latency to all memory, then it 
can function as an SMP. 

If latency is very high, or bandwidth is very low, then use of remote memory 
needs to be carefully controlled by the user.  The system functions more as a 
distributed-memory system with a shared-memory communication system than a 
scalable SMP. 

-memory bandwidth and 
latency. 
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If one assumes that the processor is stalled on cache misses and waiting for 
memory 25% of the time, then one can calculate its relative efficiency when 
accessing remote memory, which has greater latency than local memory. 

Plotting relative efficiency, based on the ratio of local references, one sees that if 
remote-memory access times are kept within 1 1/2 to 3 times local, then even 
when all references are remote, efficiency is still 2/3 of when all references are 
local. 

If locality can be increased to 50% or better, then efficiency is 80% or better. 

By contrast, if remote accesses cost 5 10 times more than local, then locality 
must be kept very high, or performance falls off dramatically.  (It is about 30% if 
100% remote references and remote references take 10 times as long as local.  
It is about 40% under those assumptions if 50% of references are local.) 

With a large ratio, the programmer must take great care to keep locality high and 
manage all references to remote memory. 

Thus, this kind of system cannot be programmed as an SMP, where memory 
placement is irrelevant and only cache reuse is important. 

Likewise, looking at remote bandwidth, if there is only a fraction of local 
bandwidth available to remote memory, then queueing delays can increase 
latency and hold down efficiency when remote memory is accessed. 

For example, if one assumes local memory is kept 40% occupied if all 
references were local, then if remote bandwidth is a fraction of local, then 
utilization of memory will be higher than if all references were local. 

Ideally, remote bandwidth equals local, and memory utilization is unchanged by 
locality.  But, in many systems, remote bandwidth is less than half of local, and 
possibly even lower than 1/8.  The effect can be to drive memory utilization very 
high, or even into saturation.  If saturation is reached, then scalability will 
obviously be limited.  Even near-saturation conditions will raise memory latency 
considerably. 

minimized and remote-memory bandwidth is kept near local. 

I/O bandwidth:  As with memory, scaling the SMP model requires that remote-I/O 
bandwidth is kept high.  Furthermore, large central-bus SMP systems provide an 
attachment point for very high-performance I/O devices that are often not very 
well supported in workstation-class systems.  Examples include high-
performance networking, such as HIPPI; disk connectivity, such as Fibre 
Channel; and high-  
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To function as an SMP replacement, DSM systems must include such high-
performance attachment points, and must have sufficient system bandwidth to 
support these devices.  Simply having a larger number of lower-performance 

SMPs. 

[20d] SG   
work on the Origin began in late 1993.  Systems first shipped in September 
1996. 

The Origin line ranges from inexpensive uniprocessor desk-sized servers to 
multirack supercomputers with 128 or more processors, all based on the same 
chip set and S2MP architecture. 

Challenge, and the DASH project from Stanford.  The Power Challenge set the 
bar of performance against which Origin was measured, while the experience on 
DASH provided the basis for many of the initial design directions of S2MP. 

Among the design goals were  

 Follow on to Power Challenge SMP.  There had to be a smooth transition 
that would not force customers to recode existing applications to 
CC-NUMA architecture.  This implied that latencies and bandwidth to 
remote memory had to be very aggressive. 

 Scalability to many CPUs.  Power Challenge could have up to 36 
processors. 

 Cost effectively scale up and down.  Also needed to scale down more 
-bit-wide bus. 

 Continued I/O, graphics leadership. 

  

Here is a block diagram of the Origin system, which can scale from 1 to as many 
as 1024 MIPS R10000 processors. 
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Each node within Origin is based on a highly integrated hub chip.  It supports 
interfaces to two R10000 processors, up to 4 GB of synchronous DRAM, a pair 
of high-speed XIO links to the I/O subsystem, and a pair of links to the high-
spe  

These interfaces are connected by an internal 64-bit crossbar, which can support 
up to 3.1 GB/s. of memory and I/O traffic. 

Processor and I/O interfaces, along with the memory directory controllers within 
the hub of the system, communicate with via messages to implement the CC-
NUMA protocol.  The network interface adds the required information to route 
the hub internal messages across the global interconnection. 

The Cray link interconnect is implemented on a pair of unidirectional 20-bit links 
that run at 390 MHz, supplying a peak data-transfer rate of 780 MB/s. in each 
direction.  These links run both within a single module and between modules 
over cables up to 5 m. in length. 

The routing network is based on a 6-ported Spider routing chip developed at 
SGI.  Systems up to 64 processors are built by interconnecting hubs and routers 
in a hypercube topology. 

With four-processor systems, hubs are 
directly connected.  Beyond this, two hubs are 
connected to each router.  The hubs are then 
configured into hypercubes of increasing 
dimension.  Attaching two nodes to each 

a tradeoff between reducing cost and 
decreasing latency, vs. per-node system 
bandwidth. 

At the 64-processor level, all ports of the 
router are used, and going beyond this  
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requires another level of interconnection. 

n grow to a 5D hypercube of 32-processor local 
cubes and interconnect up to 1024 processors. 

XIO crossbar I/O subsystem:  The XIO system uses the same high-speed 
physical interconnection as Cray link, but in a much more limited application, in 
the sense that there is a single level of crossbar, connecting up to six XIO cards 
to a pair of nodes.  An XIO card can be native to XIO, for the maximum 
bandwidth of 1.6 GB/s., but more commonly, device interfaces connect to a PCI 
bus, which is bridged to an XIO link.  Generally, the PCI bus is embedded on the 
XIO card, which implements a multiported unit of I/O expandibility. 

 

The effect is that I/O is added to the system not one PCI card at a time, but an 
entire PCI bus at a time.  For low-volume and legacy devices, there is also 
support for standard internal PCI cards and bridges to external VME card cages. 

Modular system packaging:  A single Origin module includes  

 1 to 4 nodes (8 CPUs). 
 12 XIO slots. 
 2 XBOW switches. 
 2 router switches. 
 5 UltraSCSI disk drives. 

The packaging allows the system to scale down to a cost-effective uniprocessor 
desk-size system, as well as to scale up with multiple 8-processor modules to a 
supercomputer-size system. 

[20e] Design issues:  The design was driven by our overriding goal to provide a 
truly scalable shared-memory design.  This meant the ability to support small 
systems, as well as very large systems, and to grow incrementally. 

Support of large systems also required us to address system reliability. 
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Design issues include  

 Processor and system interface. 
 Node structure and size. 
 Interconnection topology. 
 Locality optimizations to increase locality of reference. 
 Directory structure. 
 Coherence-protocol optimizations. 
 System-availability features. 

One requirement of any parallel system is that the processor be both high 
performance and highly integrated. 

Processor design considerations:   

 High-performance processors needed.  Due to sections of limited 
 parallel systems will outperform a 

uniprocessor if the processors in the parallel system are significantly less 
powerful. 

 Large shared address space.  In Origin, up to 1 TB (240) of physical 
memory is addressable from each processor.  This requires a large virtual 
address space, larger than 232. 

 Multiple outstanding memory operations.  The dynamic pipeline allows a 
high degree of parallelism in the memory subsystem.  The caches of the 
R10000 are non-blocking, and generate up to four outstanding reads to 
the memory system.  Further, the hub can also process up to eight 
concurrent write operations, for a total of up to 12 transactions per 
processor. 

 These multiple transactions both increase processor efficiency, by 
reducing the impact of memory latency, and increase throughput of 
algorithms that have limited cache reuse. 

 In Origin, these are especially important, since these references are how 
processor-to-processor communication takes place. 

Non-blocking cache operations: 

 

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 16 

Integrated node structure:  The next tradeoff was the structure and size of DSM 
nodes.  Each node is tied together by a single hub chip that provides multiple 
interfaces, each capable of moving data at 780 MB/s. 

The node design is primarily a tradeoff in the number of processors supported 
per node.  The smaller nodes used in Origin provide a very tight coupling 
between the processors and the local and remote memory.  With small nodes, 
local memory latency is comparable to the most integrated uniprocessor designs, 
since both only have a single chip between the processor and the memory itself.  
The small node size also allows a lower-cost entry point. 

Larger nodes permit a tighter coupling of processors within a node, which can 
decrease communication costs between the processors within the node.  Also, it 
can potentially reduce the overhead of the node interface to the global 
interconnection. 

In Origin, we push for the single-chip design to reduce access time for both local 
and remote memory.  The single chip also permits a cost-effective crossbar 
within the hub chip.  This is important, because it permits local processors to 
access remote memory without interfering with remote processors accessing the 
local memory. 

 

An alternative scheme, used on a number of systems, including DASH, is to add 
a DSM-interface card to an existing small-scale bus-based system. 

The problem with this type of design is illustrated by the following graphic. 
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 In order to access remote memory, the bus must be traversed three 
times.  This adds considerable latency. 

 Assuming all processors are accessing remote memory, there are 
conflicts on the bus passing local data to remote processors while 
also passing remote data to local processors. 

 Since remote accesses require multiple bus transactions, remote 
bandwidth will be reduced by a factor of 2 to 3.  This can lead to a 
large disparity between local and remote memory-access times. 

Cray link interconnection design:  Goal of interconnection is to provide low 
latency, high bandwidth, and scalable performance and cost. 

One important metric is bisection bandwidth, or the bandwidth across the center 
of the interconnection.  Generally, for uniform data accesses, bisection 
bandwidth is akin to an SMP bus. 

Interconnections vary from bus structures, to unidimensional ring structures, 
through 2D and 3D mesh structures, to hypercubes. 

Early large parallel machines predominantly employed hypercube architectures; 
however, work done by Bill Dally and Chuck Seitz created a thrust toward lower-

IEEETC paper 
is that for an equal number of wires, the lower-dimensional networks permitted 
larger, wider links.  This reduces the time to receive a message, and makes up 
for the larger number of switches that must be traversed. 

Looking in more detail at the parameters used in the study, the time to receive a 
message once it reaches its destination usually dominates the latency. 

However, in Origin, we started with the most aggressive link and router design 
we could implement, and then studied what topologies would give the best 
performance.  Given that the links are 16 bits wide, and that the latency of a 
router is 20 times the period of a word, the effective message size is very small, 
0.8 words, falling out of the latency equation (instead of 150 words estimated by 
Dally). 

With this new parameter, the latency curve vs. message dimension shows that 
latency is always reduced by increasing the dimension of the network. 

Implementing a hypercube with 16-bit links for up to 512 nodes was not feasible, 
since it would imply support for 10 links/router, which was too many pins for 

structure.  In this structure, the bisection characteristics of the hypercube are 
maintained, with the only penalty being the two additional switch latencies to 
traverse the added hierarchy. 
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In larger systems, beyond 128 nodes, the simple star structure at the top level 
becomes a 3-, 4-, or up to 5D hypercube.  This supports up to 1024 processors.  
The fat hypercube has latency that is proportional to the log of the number of 
nodes in the system, and its bisection bandwidth grows linearly with the number 
of nodes. 

For large systems, the latency is slightly higher than a pure hypercube, but much 
lower than for a 2D-mesh design that could be built with the same router chip, 
especially above 256 processors (larger than 8  8 mesh). 

Also note that unloaded local latencies are 320 ns.  The closest remote memory 

doubled.  Thus, Origin keeps the ratio of remote to local latency at 2 or 3 to 1, 
and is below 4 to 1 even for the largest 1024-processor system. 

Also, the hypercube network also has bisection bandwidth that grows linearly, 
not by the square root or cube root, as would be the case in a 2D or 3D mesh. 

[20f] While minimizing latency is important, achieving higher performance on a 
DSM system than an SMP system relies on having a good fraction of the 
references satisfied by local memory.  This can be aided if the OS allocates 
memory to processes on the same processor that they are running on.  For 
single-threaded jobs, this is fairly easy.  For parallel jobs, it is not clear which 
processor will reference the given memory location the most. 

Block-transfer engine instead of cluster cache:  Many DSM systems implement a 
3rd-level node or cluster cache to help improve locality automatically in 
hardware.  Such a cache can reduce the number of capacity misses that must 
be satisfied by remote memory; however, they do not help communication 
misses, and are subject to conflict misses themselves. In this case, the cluster 
cache has a negative effect on remote bandwidth and latency. 

Since the cluster cache must be large, it is made of DRAM.  Using a cluster 
cache implies that misses result in three DRAM accesses: 

1.  to determine that the block is not in the local cluster cache, 
2.  to fetch the block from its home memory, and 
3.  to allocate the data into the local cluster cache. 
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This will obviously impact latency. 

Origin does not use a cluster cache, and instead relies on page migration to 
improve locality. 

 Page migration is assisted by hardware that keeps 64 reference counts on 
each 4K page of memory. 

 On every access to memory, the count of the accessing node is 
incremented and compared with the home node. 

 If the count is higher than a given programmable threshold, the hardware 
interrupts one of the local processors. 

 This counting function does not affect the bandwidth of the data memory; 
it is implemented in the directory memory. 

-transfer engine, or BTE, per 
processor, which can copy the page at near the memory-bandwidth limit. 

The BTE allows migration without polluting the cache of either the local or 
remote processor. 

so that subsequent accesses by other processors receive a bus error. 

algorithm, which reduces the overall cost of migrating memory and changing the 
virtual-to-physical address mappings. 

Similarly to a cluster cache, the BTE scheme used in Origin can help optimize 
locality.  It has the added advantage that it does not increase latency or 
decrease bandwidth to remote memory. 

The only downside is that it does not react as quickly as the cluster cache to 
changes in locality.  But this effect is reduced by the filtering of references by the 
processor caches. 

Directory organization:  The structure of the directory can become a scalability 
limit in systems using a simple bit-vector scheme.  This is because length of the 
bit-vector grows by the square of the processor count.  (The amount of memory 
grows linearly with the number of processors, and the width of the bit-vector also 
grows with the number of processors.) 

In order to minimize this overhead, the directory entries have two formats. 

 The smaller 16-bit width of directory memory supports systems up to 
16 nodes, or 32 processors. 
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 The other, extended directory adds 32 bits to the base directory to 
create 48-bit-wide directory entries.  In addition, the directory is 
implemented in two sequential memory locations, so the effective width 
of the directory status information, bit-vector pointers, and ECC, is either 
32 or 96 bits (compared with 1152 bits for the data block plus ECC). 

In either format, the directory pointers are either a binary pointer to the exact 
dirty processor or I/O cache, or a bit-vector specifying which nodes have the 
block cached in the shared state. 

 

State Binary pointer 

 
 Memory block exclusive 
 3-bit state + 6-bit binary pointer    standard 
  + 11-bit binary pointer  extended 
 

State Bit-vector 

 
 Memory block shared 
 3-bit state + 16-bit vector   standard 
  + 64-bit vector  extended 
 
Coarse directory format (for > 128 processors): 

For systems with larger than 64 nodes, an additional coarse directory format is 
used.  The coarse format is only needed when more than one-eighth, or octant, 
is caching a line. 

When the line is only cached within an octant, the binary octant field, together 
with the 64-bit bit-vector, fully specifies which processors are caching a block. 

If a memory location is cached in more than one octant, the bit-vector is 
interpreted as a coarse bit-vector, where each bit represents eight nodes.  

State Binary pointer 

 
 Memory block exclusive 
 3-bit state + 11-bit binary pointer 
 

State Octant Bit-vector 
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 3-bit state + 3-bit octant + 64-bit vector 
 

State Coarse bit-vector 

 
 Memory block shared in > 1 octant 
 3-bit state + 64-bit coarse vector 
 
Thus, with the coarse bit-vector format, we can cover the sharing case where all 
1024 processors are caching a given memory block.  We only need to resort to 
the inefficiencies of the coarse format when we have a > 128-processor system, 
and a memory block is shared by processors that are not in the same octant. 

Overall, while the directory overhead in Origin is high, it is robust meaning that 
it does not have access patterns that result in severe performance degradation
and because the directory-memory overheads, including the migration counts, 
are still reasonable, being less than 6% in small systems and less than 17% in 
large systems. 

[20g] Coherence-protocol optimizations:  The DASH coherence protocol was 
used, but it has been optimized in several ways, to reduce latency and maximize 
bandwidth for uniprocessor and parallel workloads.   

The first enhancement is support for the clean exclusive (CEX) cache state, in 
addition to the normal invalid, shared, and dirty states. 

The CEX state is used when data is returned from memory for a read request, 
but is currently uncached by any other processor (as would be the case for 
normal uniprocessor data).  The data is returned exclusively to the processor, 
which can store directly to that location, without having to reference memory 
again to obtain exclusive ownership. 

In contrast, without CEX support, a processor would first obtain a shared copy 
for the read request, and then have to re-access memory to obtain exclusive 
ownership. 

The second enhancement is support within the coherence protocol for 
processors dropping CEX or shared data from their cache without updating the 
directory.  This enhancement maximizes memory bandwidth, especially in the 
uniprocessor case, because no memory transactions are required simply to 
update the directory.  All accesses are simple reads and write-backs used to 
obtain data. 

If directory updates are required, then every cache replacement requires two 
directory accesses, and memory bandwidth could be reduced by up to a factor of 
two. 
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There are other enhancements to enhance multiprocessor communication, 
similar to those used in DASH. 

In particular, there is support for request forwarding.  For reads of data held dirty 

request to the dirty cache. 

This cache responds by sending the dirty data to the requesting processor in 
parallel with sending the sharing write-back to memory. 

Likewise, upon a read-exclusive request to satisfy a store by the processor, there 
is a requirement to eliminate the other cached copies.  Forwarding in this case 
implies that memory sends invalidations to the sharing processors, and they 
return invalidate-acknowledgments directly to the running processor. 

In both the read and read-exclusive case, forwarding reduces serialization by 
one system message, reducing latency by 25%. 

Availability features:  Another important aspect of the design of a large system is 
support for high reliability. 

 Modularity and redundancy are basis for high availability. 

 All SRAM and SDRAM covered by SEC/DED ECC. 

 Highly integrated VLSI with controlled operating temperature. 

 All high-speed links covered by CRC and include link-level error 
detection and HW retransmission. 

 Cray link interconnection for multiple paths between modules and hot 
plug capability. 

Control of sharing. 

 Large-scale machines require protection from OS panics. 

 Internal registers and I/O devices protected by 64-bit access-control 
registers. 

 Each 4KB page protected by similar vectors. 

make its virtual-memory manager and scheduler NUMA-aware. 

Benchmark results:  From Stream benchmarks, which carry out stride-one vector 
operations over memory, and the benchmark allows each processor to access its 
local memory.  Origin outperforms the competition. 
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On this benchmark, though, even cluster-based systems scale, since the 
benchmark allows processors to reference their local memory.  On benchmarks 
that require running out of remote memory, Origin shows only a 12% degradation 
when memory placement is uncontrolled. 

Origin functions as a truly scalable SMP. 

Conclusion:  This work has shown that the SMP programming model can be 
made to scale to large processor counts with high performance.  The two key 
techniques are directory-based cache coherence and scalable interconnection 
networks.  These allow SMP model to stretch to design space previously only 
covered by parallel vector processors.  It can also scale down to more common 
smaller configurations. 
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Protocol Races 

[§10.4]  We have assumed— 

 Directory state reflects the most up-to-date state of caches. 
 Messages due to a request are processed atomically. 

In reality, one of or both conditions may be violated 

 Protocol races can occur 
 Some protocol races can be handled in a simple way; others 

are trickier. 

We will discuss how protocol races can be handled. 

 Purpose of discussion: illustrate approaches for dealing with 
protocol races. 

 Discussing all possible races is not the goal.   

Handling races: out-of-sync directory 

[§10.4.1]  Suppose the home sends an invalidation to a node that has 
replaced the block silently. 

 The node can reply with  

Suppose that the home receives a read request from a node that is 
already a sharer from the home point of view. 

 The directory can reply with data  

Suppose that the home receives a read/write request from a node 
that the home thinks is the owner. 

 (In the directory, what state is this block in?)  

 What might have happened to the block? 

o If the block was clean,  

o If the block was dirty,  
 

 What should the home do? (Why will neither of these work?) 

o Wait?   
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o Reply with data?

The directory alone cannot resolve this. Coherence controllers 
at other nodes must participate in the solution.

What does the coherence controller at a node n need to do 
when a flush or writeback occurs?

o Maintain an outstanding transaction buffer (OTB) for flush 
messages.

o Require the home to acknowledge the receipt of a flush

These two steps allow node n to delay a Read/ReadX request 
to a block that is still being written back.

Hence, the home only receives Read/ReadX to a block that is 
not being written back.

o When it does, it can send a

Protocol modification

Here is a modified state-transition diagram.

What is the meaning of “owner” in a directory protocol?  
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The meaning of “owner” is ambiguous here … 

because the directory may be out of sync with cache states, 

the directory may get a Read or ReadX from a node it thinks is 
the owner (but actually isn’t).

(This isn’t permitted by the protocol.)

What do we do about it?

Split EM into two states (EMA and EMB) to reflect this situation.
EMA means the directory thinks the current owner is A.
EMB means the directory thinks the current owner is B.

Transitions from state U

Suppose the block is in state U in the directory.

What happens on a ReadX request?

o The system fetches the block from the local memory, 
sends a ReplyD to the Requester, and moves to state 

What happens on a Read request?

o The system

o What state does the requesting cache transition to?

o What state does the directory transition to?  

Transitions from state S

Suppose the directory state is S.
What happens on a Read request?

o The directory knows it has a valid block in the local 
memory.

o It sends a to the Requester and updates the 
sharing vector.

o Directory state

© 2022 Edward F. Gehringer           CSC/ECE 506 Lecture Notes, Spring 2022 4

What happens on a ReadX request?

o Directory sends to the Requester.

o Directory sends to all (other) sharers.

o State changes to

o But, if it’s an upgrade, it just

Transitions from state EM

Suppose WLOG the directory state is EMA.

Suppose a Read request (from a different node B) is received.

The state is set to

An is sent to the owner (A) to change its 
state to

Suppose a ReadX request (from a different node B) is received.

Directory sends an invalidation message to

This message also says to send the data to

Directory sends a reply message to B, saying that will supply 
the data.

State transitions to

(Note that it doesn’t matter whether owner is in state E or M.)

Suppose the directory has an out-of-sync view of cache states, and is 
in state EMA.

Suppose it receives a Read or ReadX from A.

o This means A’s block must’ve been replaced due to a 
cache miss.

The directory knows that A is really the owner.

Thus, it can just respond with
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Handling races: non-atomic messages

1. [§10.4.2]  A sends a read request to home.
2. Home replies with data (but the message gets delayed).
3. B sends a write request to home.
4. Home sends invalidation to A, and it arrives before the ReplyD

Why is this a problem?  

This is called an “early invalidation” race.

How should A respond to the invalidation?

Two incorrect ways to respond: 

A replies with InvAck.

o B thinks that its write propagation is complete
o A receives a ReplyD and places the block in its cache 

(the block that should have been invalidated).

A ignores the invalidation message

o The message is lost; write propagation has failed to occur

Solution:
Brute force (avoids overlapped handling of requests):

o Home waits until it receives ack from all parties (home-
centric)

Allow overlapping but ask nodes to participate (requester-
assisted)

o Node keeps an OTB
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o It does not entertain requests (to the same block) until the 
current transaction is completed

Exercise:  Explain how each of these scenarios would play out using 
the four-step diagram above.  

Processing a Read Request

Case 1: Read to clean block

Home-centric approach

Directory enters a 
transient state.
Home replies with data
Requester receives 
data, sends ack to 
home.
Home closes 
transaction (transitions 
to a stable state, update 
sharing vector).

Cons: too much serialization at home, transaction closed late, and 
it requires ack

Requester-assisted approach
Directory sends ReplyD, then closes transaction
Requester buffers/nacks all new requests until ReplyD received
(i.e., till the current Read transaction is completed)
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Case 2: Read to block in EM state

Home-centric approach

Requester sends Read to home
Home enters a transient state, sends intervention to owner
Owner flushes block to home and requester
Requester sends ack back to home
Home closes transaction (transitions to shared state, updates 
sharing vector)

Requester-assisted approach

Requester sends Read to home
Home enters a transient state, sends intervention to owner
Home cannot close the transaction yet, because in the final 
state (Shared), it must have a clean copy of the block
Owner flushes block to home and requester
Upon receiving the block from owner, home closes transaction

Processing a write (ReadX) request

We will cover this in the next class.

Write Propagation and Serialization

[§10.4.3]  In a directory-based protocol,

Write propagation is achieved through invalidation.

Multiple writes to a block are serialized by the protocol.

o Transaction closes after the ack from current owner is 
received by home.
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o A new ReadX request is not served until the previous ReadX 
request is closed.

o This provides write serialization

Here is a diagram of serializing writes by A, B, and C. 

Is it using the home-centric or requester-assisted scheme?  

Memory consistency models

[§10.4.5]  Implementing sequential consistency:

All memory accesses by a processor must be issued and completed 
in program order.

Which of the two (issuing or completion) is hardest to assure?  

Write completion detected when all InvAcks are collected
When does read completion occur?  

Prefetching and load speculation can be used.

As the number of processors grows,

Average latency of a cache miss increases
Harder to hide it
What does this do to the viability of SC?  
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Interconnection networks

When more than one processor needs to access a memory structure, 
interconnection networks are needed to route data

from processors to memories (concurrent access to a shared 
memory structure), or

from one PE (processor + memory) to another (to provide a 
message-passing facility).

Inevitably, a large bandwidth is required to match the combined 
bandwidth of the processing elements.

»  One extreme is a shared bus.  How does the cost scale as the 
number of processors N increases?  

How does the bandwidth scale?  

»  For concurrent access to shared memory, the ideal structure is a 
, which can simultaneously connect any set of 

processors to any set of distinct memory modules.

All N processors can access all M memory 
units with an N M crossbar switch.

Since there are usually about as many 
processors as memories, as processors are 
added, the complexity of a crossbar switch 
grows as N2.

How does the bandwidth scale?  Memories

Crossbar 
Switch

For reasonably large values of N, the crossbar switch may be more 
expensive than the processors and memories.

»  For message passing, the most general is the complete 
interconnection network a path from each processor to every other 
processor.

Unfortunately, this requires bidirectional links.  
Cost grows with the square of N.
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Measures of interconnection performance 

Several metrics are commonly used to describe the performance of 
interconnection networks: 

 Degree, the number of 
node. 

 Diameter, the maximum number of nodes through which a 
message must pass on its way from source to destination. 

Diameter measures the maximum delay in transmitting a 
message from one processor to another. 

 Average distance, where the distance between two nodes is 
defined by the number of hops in the shortest path between 
those nodes.  Average distance is given by 

davg = 
d=1

r

 (d  . Nd)

N 1    

 where N is the number of nodes, Nd is the number of nodes at 
distance d apart, and r is the diameter. 

 Bisection width, the smallest number of wires you have to cut to 
disconnect the network into two equal halves (±1). 

For a crossbar, give all of these metrics: Degree, diameter, average 
distance, bisection width.   
 

Which of these metrics are measures of performance, and which are 
measures of cost?   
 
 
 
  

Interconnection topologies 

[§10.4]  An idealized interconnection structure  
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 takes a set of n n 1 and 

 sets up connections between them and a set of m output ports 
m 1, 

 with the connections determined by control signals. 
 

Interconnection 
structureInput n

Input 0 Output 0

Output m

Control signals  
Usually we will assume that m = n. 

Here are some sample topologies. 

1. Ring. 

Processor i directly connected to processors i+1(mod N) and i 1 
(mod N).  Data can be moved from any processor to any other by a 
sequence of cyclic shifts. 

Motivation:  Many parallel algorithms include calculations of the form 

X [i ]   := 
X [i 1] + X [i] 

2   

Usually every item of an array except the first and last is updated in 
this way.   

 
The processor interconnections can be 
diagrammed as a bidirectional ring: 

The diameter of a bidirectional ring is 
.  Its bisection width is  

What about average distance and 
degree?   

2. Mesh interconnection network 
 

A mesh is like  
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One motivation:  Four-point iteration is common in the solution of 
partial differential equations.  Calculations of the form 

X [i,  j ]  := (X [i +1, j ] + X [i 1, j ] + X [i , j 1] + X [i , j +1]) ÷ 4) 
 
are performed frequently. Old New

i
i

i +1
j  

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

a b c d

a b c d

f

g

h

f

g

h

e

e

 

Here is an 
example of a 16-
node mesh.  Note 
that the last 
element in one 
row is connected 
to the first 
element in the 
next. 

If the last element 
in each row were 
connected to the 
first element in 
the same row, we 
would have a 
torus instead. 

In the Illiac IV, each processor i was connected to processors: 

{i+1,  i 1, i+8, and i 8}  (mod 64). 

The diameter of an Illiac IV mesh  is N  1.  For example, in a 16-
node mesh structure, it takes a maximum of 3 steps.  To see that, let 
us look at the mesh interconnection network shown in the form of a 
chordal ring: 
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0 1

2

3

4

5

6

79

10

11

12

13

14

15

8  

In a 64-element mesh, any node can be reached from any other in no 
more than 7 of these shifts. 

Without the end-
diameter is 2( N  1). 

It is also possible to have a multidimensional mesh.  The diameter of 
a d-dimensional mesh is d(N 1/d ) 1 and its bisection width is N(d 1)/d 

The average distance is d  2(N 1/d )/3 (without end-around 
connections). 

3. Hypercube 

000

100

110

010

001

011

111

101

 

A hypercube is a generalized cube.  
In a hypercube, there are 2n nodes, 
for some n.  Each node is connected 
to all other nodes whose numbers 
differ from it in only one bit position. 

 
 
What is the degree of a hypercube?  

What is the diameter of a hypercube?  

What is the average distance?  
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What is the bisection width?   

An interconnection network can be either single stage or multistage. 

 If it is single stage, then the individual control boxes must be 
set up to n times to get data from one node to another. 

 Data may have to pass through several PEs to reach its 
destination. 

 Multistage networks have several sets of switches in parallel, 
so data only needs to pass through several switches, not 
several nodes. 

For a multistage cube network, we can diagram the paths from one 
cell to another like this: 

0
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3

4

5

6

7
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2

1

3

4
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5

7

0

4

1

5

2
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3

7

0

1

2

3

4

5

6

7

Stage 0 Stage 1 Stage 2  
 

A multistage cube network is often called an indirect binary n-cube. 

4. Perfect-shuffle interconnection 

This interconnection network is defined by the routing function 

S ((an 1  a1a0)2)    (an 2   a1a0 an 1)2 
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It describes what 
happens when we 
divide a card deck of, 
e.g., 8 cards into two 
halves and shuffle 
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We can draw the 
processor 
interconnections 
required to obtain 
this transformation 
(at near right):  
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2

1
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If the links are bidirectional, the inverse perfect shuffle is obtained 
(above, right).   
 
 
 
 

 
5. Shuffle-exchange network 

By itself, a shuffle network is not a complete interconnection network.  
This can be seen by looking at what happens as data is recirculated 
through the network: 
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0 1 2 3 4 5 6 7

 
 

An exchange permutation can be added to a shuffle network to make 
it into a complete interconnection structure: 

E (an 1  a1 a0)2    an 1  a1 a0 

A shuffle-exchange network is isomorphic to a cube network, with a 
suitable renumbering of boxes. 

Here is a diagram of a multistage shuffle-exchange network for N = 8. 
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Exch. 1 Exch. 2 Exch. 3

Shuffle 1 Shuffle 2 Shuffle 3  

Sums (or other operations involving all the elements) can be 
performed in log N steps. 

In addition, with a shuffle-exchange network, arbitrary cyclic shifts of 
an N-element array can be performed in log N steps.  
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This diagram shows how the switches in a shuffle-exchange network 
can be set to route input k to output k + 3 (mod 8). 
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Shuffle 1 Shuffle 2 Shuffle 3  

Switches are set to pass through or cross over depending on the 
exclusive-or of the input and output port numbers.  

0 xor 3 = 0002 xor 0112 = 011  the first switch is set to pass 
through; the next two along the route are set to cross over. 

1 xor 4 = 0012 xor 1002 = 101  the first switch is set to cross over, 
the next one to pass through, and the last one to cross over. 

2 xor 5 = 0102 xor 1012 = 111  all three switches along the route 
are set to cross over. 

The diameter of a shuffle-exchange network is  

The bisection width is  
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6. Butterfly network 

A butterfly network is closely related to shuffle-
exchange networks. 

The butterfly permutation is defined as  

B(an 1 an 2 a1 a0)    a0 an 2 a1 an 1 

i.e., the permutation formed by interchanging the 
most- and least-significant bits in the binary 
representation of the node number. 

This permutation can be diagrammed as shown 
at the right: 
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Two variants of the butterfly permutation are the kth sub-butterfly, 
performed by interchanging bits 0 and k 1 in the binary 
representation  

Bk(an 1 an 2 a1 a0)    an 1an 2 ak a0 a1 ak 1 

and the kth super-butterfly, peformed by interchanging bits n 1 and 
k 1: 

 Bk(an 1 an 2 a1 a0)  ak 1 an 2 ak an 1ak 2 a0 

The textbook has an interesting diagram showing how metrics 
change with size for 2D meshes, hypercubes, and butterflies. 

Explain what it says about increasing arity (k) vs. increasing 
dimension (d).  Given the numbers here, which network would be 
more desirable for larger multiprocessors?   
 

But why is this not the whole story?   
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7. Benes  network   

As we have seen, a crossbar switch is capable of connecting a set of 
inputs to any set of distinct outputs simultaneously.   

A shuffle-exchange, or multistage cube, network is not capable of 
doing this.   (It is easy to come up with an example.) 

Is it possible to achieve an arbitrary permutation of input-output 
combinations with less than a full crossbar switch? 

Yes.  The Benes  network substitutes two N/2  N/2 crossbar 
switches, plus an N-input exchange switch for a full crossbar switch, 
as shown below.   
 

D
ia

m
et

er
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N
2

  
N
2

crossbar 
switch

N
2

  
N
2

crossbar 
switch

Input 0

Input 1

Input N

Input N

Output 0

Output 1

Output N

NOutput 

ID

ID

ID

ID

OM

OM

OM

OM  

The resulting N/2  N/2 crossbar switches can be similarly reduced. 

Through this process, a full connection network can be produced 
from 2  2 switches at significantly lower cost than a full crossbar: 
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The stages of a Benes  network are connected by shuffle and inverse-
shuffle permutations. 

The network is called rearrangeable, since the switch settings can 
always be rearranged to accommodate any input-output mapping. 

In some Benes  networks, the switches are capable of performing 
broadcasts, as well as pass-through or interchange. 

Such Benes  networks can achieve all NN possible input/output 
mappings. 

Trees 

In meshes and hypercubes, the average distance increases with the 
dth root of N. 
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In a tree, the average distance grows only logarithmically. 

A simple tree structure, however, suffers from two problems. 

 Congestion  
 

 Its fault tolerance is low.   
 
 

 

8. Fat trees 

One approach to overcoming the limitations of the tree topology was 
devised by Leiserson and implemented in the Thinking Machines 
CM-5 data network. 

The idea is that the edges at level k should have two or more times 
the capacity of the edges at level k+1 (the root is at level 0). 

 

In reality, the links at higher levels are formed by replicating 
connections. 
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The algorithm for routing a message from processor i to processor j is  
as follows:

Starting from processor i, a message moves up the tree along 
the path taking it to the first common ancestor of i and j.

There are many possible paths, so at each level the routing 
processor chooses a path at random, in order to balance the 
load.

Upon reaching the first common ancestor, the message is then 
routed down along the unique path connecting it to processor j.

What are some metrics for a fat tree?

The diameter is

and its bisection width is

What is its degree?  

We have shown a fat tree based on a binary tree.  It may also be 
based on a k-ary tree.  The CM-5 used fat trees based on 4-ary 
trees:
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A k-ary fat tree can also be viewed as a k-ary Benes  network that is 
folded back on itself in the high-order dimension:

The collection of N/2 switches at level i is viewed as 2d i

2i 1 switches, where d is the dimension of the switch (where d is the 
number of levels in the tree 4 in the picture).








