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CSC/ECE 506: Architecture of Parallel Computers  
Program 3: Bus-Based Cache Coherence Protocols  

Due: Friday, July 11, 2025 

1. Problem Description 

This project asks you to add new features to a trace-driven cache-coherence simulator. It is supposed 
to give you an idea of how parallel architectures handle coherence, and how to interpret performance 
data. You are given a C++ cache simulator implementing the MSI protocol, and you need to extend that 
simulator to implement the MOESI and MESI protocols. Your project should be built on a Linux 
machine. The most challenging part of this machine problem is understanding how caches and 
coherence protocols are implemented. Once you understand this, the rest of the assignment should be 
straightforward. 

2. Simulator 

How to build the simulator 
You are provided with a working C++ program for a cache implementing the MSI protocol. There is an 
abstract base class, cache.cc, and a derived msi.cc, which actually implements the cache-coherence 
protocol. The Cache class implements what is common to each class, and the MSI class implements 
functionality that is unique to the MSI protocol.  You should derive other classes to implement each 
new protocol. The following methods differ from protocol to protocol: 

● void PrRd(ulong addr, int processor_number) 

● void PrWr(ulong addr, int processor_number) 

● void BusRd(ulong addr) 

● void BusRdX(ulong addr) 

● void BusWr(ulong addr) 

● cache_line *allocate_line(ulong addr) 
● boolean writeback_needed(cache_state state) 

Note that some protocols do not implement some of the above methods. The Bus* methods take care 
of snooping a bus operation in a single cache; for methods that apply these bus operations to all caches, 
see the methods sendBusRd, sendBusUpgr, and sendBusRdX. 

The PrRd, PrWr, BusRd, and BusRdX methods are different for each protocol, because each protocol 
handles processor and bus actions differently. Of course, for some protocols, you may also need to 
implement additional bus operations, such as BusWr, BusUpgd, etc. The writeback_needed and 
allocateLine methods are different for each protocol, because when a line is ejected from the 
cache, it has to be written back if it has been modified, and the states that represent modified lines 
differ from protocol to protocol. 

You are provided with a basic main function (in main.cc) that reads an input trace and passes the 
memory transactions down through the memory hierarchy (in our case, there is only one level of 
cache in the hierarchy). The provided code: 

● reads in a parameter representing the protocol, and instantiates the appropriate kind of cache; 

● handles bus operations, applying them to each of the caches.
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Also, main.cc has methods sendBusRd and sendBusRdX that apply BusRd and BusRdX, 
respectively, to each of the caches. Thus, when PrRd or PrWr needs to send a BusRd or BusRdX 
out on the bus, it just invokes sendBusRd, sendBusUpgr or sendBusRdX. 

In a real architecture, a signal would just be sent out on the bus, and all caches would see it. In the 
simulator, each    cache needs to be separately informed that a BusRd or BusRdX is occurring. 

You may choose not to use the given basic cache and to start from scratch (i.e., you can implement 
everything required for this project on your own), provided your simulator also uses inheritance to 

implement the different cache protocols. (No one has ever done this 😊)  However, your results 
should match the posted validation runs exactly. 

In this project, you need to maintain coherence across the one-level cache. For simplicity, assume 
that each processor has a single private L1 cache connected to the main memory directly through a 
shared bus, as shown in Figure 1. 

 

Figure 1. A homogenous SMP system consisting of sixteen processors, each connected to a private 
L1 cache. All caches are connected to the main memory through a shared bus. 

 
Note: The given simulator’s write policy is write-back, write-allocate (WBWA) and it implements the 
LRU replacement policy. So in case you are planning to create or use your own simulator, please keep 
these policies in mind. 

Requirements 

For this programming assignment, you should implement the MOESI and MESI protocols and match the 
results produced by the reference simulator exactly. 

Your simulator should accept multiple arguments that specify different attributes of the 
multiprocessor system. One of these attributes is the coherence protocol that is being used. In 
other words, your simulator should be able to generate one binary that works with all coherence 
protocols. More description about the input arguments is provided in the following section. 
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3. Getting Started 

We have provided five trace files for this project, which are too large to download reliably. The files are 
located on this  drive.  The trace file that you need to use to test your protocol implementations is 
streamcluster.simdev.bin. The remaining trace files are used by the question trace files (Ex: 
q1.sh).  

 
After running ‘make all’, an executable called simulate_cache will be created. In order to run your 
simulator, you need to execute the following command: 

./simulate_cache <cache_size[unit]> <line_size> <associativity> <coherence> 
<replacer> <trace_file> [trace_limit] 

 

where— 

● cache_size: The size of the cache in bytes. Optionally, 'k' or 'M' can be specified as the `unit`. 
For instance, one can specify '128k' instead of '131072'. 

● associativity: Associativity of each cache (all caches are of the same associativity) 

● line_size: Block size of each cache line (all caches are of the same block size) 

● coherence: msi, mesi, moesi 

● replacer: lru  

● trace_file: The input file that has the multithreaded workload trace. 
The trace files to use  are  streamcluster.simdev.bin 

● trace_limit: (Optional) The maximum number of traces the 
simulator should process 

You can use streamcluster.simdev.bin to debug your code and for creating the tables. For 
answering the questions, please use the q#.sh files provided. (Note: to enable access, you will first 
need to run ‘chmod +x q#.sh’. Then, you can run ‘./q#.sh’ where # is the question number). Each 
trace file has a sequence of cache transactions; each transaction consists of three elements: 

〈processor(0-15)〉 〈operation (r,w) 〉 〈address (8 hex chars) 〉 

CohereSim reads in memory trace files to simulate cache behavior and record statistics. These 
are binary files comprised of a series of 5-byte memory accesses. Each memory access is 
structured as follows: 

The first 7 bits (7 high bits) are the CPU core ID that performs the memory access 

The 8th bit (LSB) is the operation (1 = write, 0 = read) 

The remaining 4 bytes are the 32-bit memory address accessed, stored in little endian byte 
ordering 

For example, a trace of 09 70 7D 11 00 evaluates to a write operation by CPU core 4 at address 
0x00117D70. 

To help you debug your code, we have provided two reference shell scripts, test_mesi.sh and 
test_moesi.sh. (Note: you will need to run ‘chmod +x test_mesi.sh’ and ‘chmod +x 
test_moesi.sh’ to run these shell scripts. 

  

https://drive.google.com/drive/u/0/folders/0ACuk-x15dR3tUk9PVA?ddrp=1
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4. Report 

For this problem, you will experiment with various cache configurations and measure the cache 
performance of the processors. The cache configurations that you should try are: 

• Cache size: vary from 128KB, 256KB, 512KB, 1024KB, 2048KB while keeping associativity 
at 4 and block size 64B. 

• Cache associativity: vary between 1, 2, 4, 8, and fully associative, while keeping cache size 
as 1024 KB and block size 64B. 

• Cache-block size: vary from 32B, 64B, 128B, 256B, 512B while keeping cache size at 1048 KB 
and associativity at 2. 

• Protocol: MESI and MOESI. 

Do all the above experiments for each protocol. For each simulation, run and collect the following 
statistics for each cache: 

1. Number of read transactions the cache has received. 

2. Number of read misses the cache has suffered. 

3. Number of write transactions the cache has received. 

4. Number of write misses the cache has suffered. 

5. The total miss rate of the cache. 

6. Number of dirty cache blocks written back to the main memory. 

7. Number of transactions of the cache with the memory. This includes the total number 
of times a read and write is performed from the memory. Both write-throughs and 
writebacks count as writes. 

8. Number of cache-to-cache transfers from the requestor cache perspective (i.e., how 
many lines this cache has received from other peer caches). 

9. Number of interventions. 

10. Number of invalidations. 

11. Number of flushes. 

12. Number of BusRds that have been issued. 

13. Number of BusRdXs that have been issued. 

14. Number of BusWrs that have been issued. 

 
For the bus operations, you should count the number that have been issued on the bus. Do not 
count one bus transaction for each cache that each operation is applied to. In other words, if there 
are sixteen processors and P1 issues a BusRd, this counts as only one bus operation, not four. 
Overall, the report should— 

● present the statistics in tabular format as well as figures in your report, 

● discuss trends with respect to change in the configuration of the system as well as across the 
protocol, and 

● consider the following issues. 

1. Does increasing the cache size benefit a heavily shared workload? In this 
context, a heavily shared workload refers to a workload where multiple 
processes are reading/writing the same data frequently. In other words, how 
does increasing the cache size affect the # of read/write misses? (Note: Use 
the q1.sh file to run the tests for MESI and look for the results in results/q1.) 
Create a graph to provide evidence for your answer. 

2. How does increasing the block size affect the number of read/write misses for 
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a low granularity workload (small shared data blocks) compared to a high 
granularity workload (large shared data blocks)? (Note: Use the q2.sh file to 
run the tests for MESI and look for the results in results/q2.) Create a graph 
to provide evidence for your answer. 

3. Compare the overall miss rates for MSI vs MESI protocols. (Note: Use the 
q3.sh file to run the tests and look for the results in results/q3.) Create a 
graph to provide evidence for your answer. 

4. Does higher associativity benefit a large cache or a small cache more? (Note: 
Use the q4.sh file to run the tests and look for the results in results/q4.) 
Create a graph to provide evidence for your answer. 

5. Grading 

● 20%: Your code compiles successfully 

● 40%: Your output matches exactly with the one from the reference simulator. 

● 40%: Report. Credit will be given on the statistics shown and discussion presented. 

6. Submission 

Create a compressed folder named <unityID1_unityID2>.tar.gz  containing the files— 

● The provided reference simulator 

● Code directory including all .cc files. (Do not include any object files; run make clean before 
submission.) (Also, do not include the traces folder.) 

● A report of your results, including all the statistics as mentioned in Section 4, and name it 
report.pdf. 

● Any deviation from the format mentioned for the files and zip folder will result in deduction of 
5 points. 

The command to compress: 

tar -czvf 〈unityID1[_unityID2]〉.tar.gz /path/to/your/project3 

7. Suggestions 

1. Read the Cache and Dragon classes carefully, and understand how a single cache works. 

2. Most of the code given to you is well encapsulated, so you do not have to modify 
most of the existing functions. You may need to add more functions as deemed 
necessary. 

3. Start early and post your questions on Piazza. 

8. Resource Information 

1. Log on to the VCL at vcl.ncsu.edu and choose the Ubuntu 22 GPU with Cuda (GeForce RTX 
2080 Ti) environment. Note: You will want to select 2-3 weeks for the duration to have your 
work stay saved in the environment, especially for the large trace files. 

2. The trace files should be copied into the traces/ folder within program3. 
3. The code files to edit are src/coherence/mesi.cc and src/coherence/moesi.cc. 


