
 

Lecture 7 Architecture of Parallel Computers 1 

Simulating ocean currents 

We will study a parallel application that simulates ocean currents. 

Goal: Simulate the motion of water currents in the ocean.  Important 
to climate modeling. 

The overall structure of the program looks like this: 

 

The program offers opportunities for function parallelism (   
  ) and data parallelism (     ). 
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We will concentrate on solving the equation for ψa (data parallelism). 

Motion depends on atmospheric forces, friction with ocean floor, and 
“friction” with ocean walls. 

To predict the state of the ocean at any instant, we need to solve 
complex systems of equations. 

The problem is continuous in both space and time.   
But to solve it, we discretize it over both dimensions. 

Every important variable, e.g., 

• pressure • velocity • currents 

has a value at each grid point. 

This model uses a set of 2D horizontal cross-sections through the 
ocean basin. 

Equations of motion are solved at all the grid points in one time-step. 

• The state of the variables is updated, based on this solution. 

• The equations of motion are solved for the next time-step. 

Tasks 

The first step is to divide the work into tasks. 

(a) Cross sections  
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• A task is an arbitrarily defined portion of work. 

• It is the smallest unit of concurrency that the program can exploit. 

Example:  In the ocean simulation, a task can be computations on— 

• a single grid point,  

• a row of grid points, or  

• any arbitrary subset of the grid. 

Tasks are chosen to match some natural granularity in the work. 

• If the grain is small, the decomposition is called   . 

• If it is large, the decomposition is called    . 

Threads 

A thread is an abstract entity that performs tasks. 

• A program is composed of cooperating threads. 

• Each thread is assigned to a processor. 

• Threads need not correspond 1-to-1 with processors! 

Example:  In the ocean simulation, an equal number of rows may be 
assigned to each thread. 

Four steps in parallelizing a program: 

• Decomposition of the computation into tasks. 

• Assignment of tasks to threads. 

• Orchestration of the necessary data access, communication, 
and synchronization among threads. 

• Mapping of threads to processors. 
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Together, decomposition and assignment are called partitioning. 

They break up the computation into tasks to be divided among 
threads. 

The number of tasks available at a time is an upper bound on the 
achievable parallelism. 

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload

Reduce communication volume

Orchestration Yes Reduce noninherent communication via data 

locality

Reduce communication and synchronization cost 

as seen by the processor

Reduce serialization at shared resources

Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if 

necessary

Exploit locality in network topology
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Parallelization of an Example Program 

[§2.3]  In this lecture, we will consider a parallelization of the kernel of 
the Ocean application. 

The serial program 

The equation solver solves a PDE on a grid. 

It operates on a regular 2D grid of (n+2) by (n+2) elements. 

• The boundary elements in the border rows and columns do not 
change. 

• The interior n-by-n points are updated, starting from their initial 
values. 

 

A [ i,j ] = 0.2    ( A [ i,j ] +  A [ i,j –  1] +  A [ i –  1 ,  j ] + 

A [ i,j  + 1] +  A [ i  + 1,  j ]) 

Expr ession for updating each interior point: 

 

• The old value at each point is replaced by the weighted 
average of itself and its 4 nearest-neighbor points. 

• Updates are done from left to right, top to bottom. 

° The update computation for a point sees the new values of 
points above and to the left, and 

° the old values of points below and to the right. 

 This form of update is called the Gauss-Seidel method. 

During each sweep, the solver computes how much each element 
has changed since the last sweep. 
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• If the sum of these differences is less than a “tolerance” 
parameter, the solution has converged. 

• If so, we exit solver; if not, we do another sweep. 

Here is the code for the solver. 

Answer these questions about the solver. 

Why is the array size (n+2)(n+2) rather than nn?  

Why is it necessary to use a temp variable?  

Why is the denominator in Line 25 n*n?  
 
 

1.  int n;            /*size of matrix: (n + 2-by-n + 2) elements*/ 

2.  double **A, diff = 0; 

 

3.  main() 

4.  begin 

5.   read(n) ;           /*read input parameter: matrix size*/ 

6.   A  malloc (a 2-d array of size n + 2 by n + 2 doubles); 

7.   initialize(A);        /*initialize the matrix A somehow*/  

8.   Solve (A);         /*call the routine to solve equation*/ 

9.  end main 

 

10. procedure Solve (A)       /*solve the equation system*/ 

11.  double **A;          /*A is an (n + 2)-by-(n + 2) array*/ 

12. begin 

13.  int i, j, done = 0; 

14.  float diff = 0, temp; 

15.  while (!done) do       /*outermost loop over sweeps*/ 

16.   diff = 0;          /*initialize maximum difference to 0*/ 

17.   for i  1 to n do     /*sweep over nonborder points of grid*/ 

18.    for j  1 to n do 

19.     temp = A[i,j];     /*save old value of element*/ 

20.     A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 

21.      A[i,j+1] + A[i+1,j]); /*compute average*/ 

22.     diff += abs(A[i,j] - temp);      

23.    end for 

24.   end for 

25.   if (diff/(n*n) < TOL) then done = 1;         

26.  end while 

27. end procedure 

https://docs.google.com/forms/d/e/1FAIpQLSfUvdJQUjWwIM7SsrZsQGUt2bJLheEyXUDoJ9f8PLPlk8Ksdg/viewform?usp=sf_link
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Decomposition 

A simple way to identify concurrency is to look at loop iterations. 

Is there much concurrency in this example?  Does the algorithm let 
us perform more than one sweep concurrently?  
 

Note that— 

• Computation proceeds from left to right and top to bottom. 

• Thus, to compute a point, we use  

° the updated values from the point above and the point to the 
left, but 

° the “old” values of the point itself and its neighbors below 
and to the right. 

Here is a diagram that illustrates the dependences. 

 

The horizontal and vertical 
lines with arrows indicate 
dependences. 

The dashed lines along the 
antidiagonal connect points 
with no dependences that can 
be computed in parallel. 

Check: If A[3,4]is being 

computed, which updated 
values are used in the 
calculation? 

Which of the following points can be updated in parallel? 

Of the O(   ) work in each sweep,  concurrency proportional to          
along antidiagonals. (Give your answer in terms of n; how many 
points along an antidiagonal can be computed in parallel?) 

How could we exploit this parallelism? 

https://docs.google.com/forms/d/e/1FAIpQLSelN2y_1kiJlsdBCfW2mKqnSltRQKWPQ2imDq8tPsPY1C-7xA/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSdO-O2wHF7_aKN-eBscyz3WngwtqsuVesQreFjkWtboGZwPKQ/viewform?usp=sf_link
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• We can leave loop structure alone and let loops run in parallel, 
inserting synchronization ops to make sure a value is computed 
before it is used. 

Why isn’t this a good idea?   
 

• We can change the loop structure, making 

° the outer for loop (line 17) iterate over anti-diagonals, and 

° the inner for loop (line 18) iterate over elements within an 
antidiagonal. 

Why isn’t this a good idea?  
 
 

The Gauss-Seidel algorithm doesn’t require us to update the points 
from left to right and top to bottom. 

It is just a convenient way to program on a uniprocessor. 

We can compute the points in another order, as long as we use 
updated values frequently enough (if we don’t, the solution will 
converge, but more slowly). 

Red-black ordering 

Let’s divide the points into alternating “red” and “black” points: 

 

Red point 

Black point 

 

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSePT_MTqX7MVi_UV78_jP1XpxF77WTsIy3RrQlkyq5gn7pwiA/viewform
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To compute a red point, we don’t need the updated value of any other 
red point.  But we need the updated values of 2 black points. 

And similarly for computing black points. 

Thus, we can divide each sweep into two phases. 

• First we compute all red points. 
• Then we compute all black points. 

True, we don’t use any updated black values in computing red points. 

But we use all updated red values in computing black points. 

 

Whether this converges more slowly or faster than the original 
ordering depends on the problem. 

But it does have important advantages for parallelism. 

• Which points can be computed in parallel? 

• Altogether, how many red points can be computed in parallel?   

• How many black points can be computed in parallel?   
 

Red-black ordering is effective, but it doesn’t produce code that can 
fit on a single display screen. 

A simpler decomposition 

Another ordering that is simpler but still works reasonably well is just 
to ignore dependences between grid points within a sweep. 

https://docs.google.com/forms/d/e/1FAIpQLSe-shJFEs1jC7Ns7cLh4qFDEQKKcfsYnHB3GwufJGabwDJ1kg/viewform?usp=sf_link


© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 10 

A sweep just updates points based on their nearest neighbors, 
regardless of whether the neighbors have been updated yet. 

Global synchronization is still used between sweeps, however. 

Now execution is no longer deterministic.  (Does this matter?) 

The number of sweeps needed, and the results, may depend on the 
number of processors used. 

But for most reasonable assignments of processors, the number of 
sweeps will not vary much. 

Let’s look at the code for this. 

 
The only difference is that for has been replaced by for_all. 

A for_all just tells the system that all iterations can be executed in 
parallel. 

With for_all in both loops, all n2 iterations of the nested loop can be 
executed in parallel. 

We could write the program so that the computation of one row of 
grid points must be assigned to a single processor.  How would we 
do this?   

15. while (!done) do       /*a sequential loop*/ 
16.  diff = 0;        

17.  for_all i  1 to n do    /*a parallel loop nest*/ 

18.   for_all j  1 to n do 

19.    temp = A[i,j];     

20.    A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 

21.     A[i,j+1] + A[i+1,j]);      

22.    diff += abs(A[i,j] - temp);      

23.   end for_all 

24.  end for_all 

25.  if (diff/(n*n) < TOL) then done = 1;         

26. end while 

https://docs.google.com/forms/d/e/1FAIpQLSeH7ayeCvUqmmpbifcy76F4idWRphw_LclXTY3mc6iCgScIQg/viewform?usp=sf_link


 

Lecture 7 Architecture of Parallel Computers 11 

With each row assigned to a different processor, each task has to 
access about 2n grid points that were computed by other processors; 
meanwhile, it computes n grid points itself. 

So the communication-to-computation ratio is O(1). 


