
 

Lecture 20 Architecture of Parallel Computers 1 

Barriers 

[§8.2]  Like locks, barriers can be implemented in different ways, 
depending upon how important efficiency is. 

• Performance criteria 

o Latency: time spent from reaching the barrier to leaving it 

o Traffic: number of bytes communicated as a function of 
number of processors 

• In current systems, barriers are typically implemented in 
software using locks, flags, counters. 

o Adequate for small systems 
o Not scalable for large systems 

A thread might have this general organization: 

..  

parallel region 

BARRIER 

parallel region 

BARRIER 

.. 

Note that barriers are usually constructed using locks, and thus can 
use any of the lock implementations in the previous lecture. 

A barrier can be implemented like this (first attempt): 

// shared variables used in barrier & their initial values  

int numArrived = 0;  

lock_type barLock = 0;  

int canGo = 0;  

 

// barrier implementation  

void barrier () {  

   lock(&barLock);  

      if (numArrived == 0)  // first thread sets flag  

         canGo = 0;  

      numArrived++;  



© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 2 

      int myCount = numArrived;  

   unlock(&barLock);  

 

   if (myCount < NUM_THREADS) {  

      while (canGo == 0) {}; // wait for last thread  

   }  

   else { // this is the last thread to arrive  

      numArrived = 0; // reset for next barrier  

      canGo = 1; // release all threads  

 }  

}  

What’s wrong with this?   
 
 
 

Sense-reversal centralized barrier 

[§8.2.1]  The simplest solution to the correctness problem above just 
toggles the barrier …  

• the first time, the threads wait for canGo to become 1;  

• the next time they wait for it to become 0;  

• and then they alternate waiting for it to become 1 and 0 at 
successive barriers. 

Here is the code: 

// variables used in a barrier and their initial values  

int numArrived = 0;  

lock_type barLock = 0;  

int canGo = 0;  

 

// thread-private variable  

int valueToAwait = 0;  

 

// barrier implementation  

void barrier () { 

   valueToAwait = 1 - valueToAwait; // toggle it  

   lock(&barLock);  

      numArrived++;  

      int myCount = numArrived;  

   unlock(&barLock);  

 



 

Lecture 20 Architecture of Parallel Computers 3 

   if (myCount < NUM_THREADS) {  

      while (canGo != valueToAwait) {}; // await last thread  
   } 

   else  { // this is the last thread to arrive  

      numArrived = 0; // reset for next barrier  

      canGo = valueToAwait; // release all threads  

   } 

}  

How does the traffic at this barrier scale?   
 
 
 

Combining-tree barrier 

[§8.2.2]  A tree-based strategy can be used to reduce contention, 
similarly to the way we used partial sums in Lecture 6. 

• Threads represent the leaf nodes of a tree. 

• The non-leaf nodes are the variables that the threads spin on. 

• Each thread spins on the variable of its immediate parent, 
which constitutes an intermediate barrier. 

• Once all threads have arrived at the intermediate barrier, one of 
these threads goes on and spins on the variable immediately 
above. 

• This is repeated until the root is reached.  At this point, the root 
releases all threads by setting a flag.   
 

How does this improve performance?   
 
 

But there is an offsetting cost to a combining tree.  What is it?   
 

[§8.2.3]  In very large supercomputers, however, this technique does 
not suffice.   

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSed-uywysEWe5To8ZV3uMVjS1b169RxZ4-QSC-6qdi7N-96wA/viewform
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSceKHnv_xHnP_tBkmYDt7Nru1hDRwouwSN3ymzsc6rGaRT-Yg/viewform


© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 4 

The BlueGene/L system has a special barrier network for 
implementing barriers and broadcasting notifications to processors. 

The network contains four independent channels. 

Each level does a global 
and of the signals from 
the levels below it. 

The signals are combined 
in hardware and 
propagate to the top of a 
combining tree. 

The tree can also be used to do a global interrupt when the entire 
machine or partition must be stopped as soon as possible “for 
diagnostic purposes.”  

In this case, each level does a global or of the signals from beneath. 

Once the signal propagates to the top of the tree, the resultant 
notification is broadcast down the tree. 

The round-trip latency is only 1.5 μs for a system of 64K nodes. 


