

Lecture 18 Architecture of Parallel Computers 1

Relaxed Memory-Consistency Models

Review. Why are relaxed memory-consistency models needed?

How do relaxed MC models require programs to be changed?

The “safety net” between operations whose order needs to be
guaranteed is often a fence instruction.

• The fence ensures that memory operations that are “younger”
are not issued until the older mem ops have globally performed.
The newer instruction must

o wait until all older writes have been posted on the bus (or
received InvAck);

o wait until all older reads have completed;

o flush the pipeline to avoid issuing younger mem ops early

• Programmers must insert fences.

What if amateur programmers perform their own synchronization, and
forget fences?

A continuum of consistency models

Sequential consistency is one view of what a programming model
should guarantee.

Let us introduce a way of diagramming consistency models.
Suppose that—

• The value of a particular memory word in processor 2’s local
memory is 0.

• Then processor 1 writes the value 1 to that word of memory.
Note that this is a remote write.

• Processor 2 then reads the word. But, being local, the read
occurs quickly, and the value 0 is returned.

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScQJoqDB0vN51hcRcDC96AxM6KY1Ft5fnsvEDUoxQSnnaDEmw/viewform

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

What’s wrong with this?

This situation can be diagrammed like this (the horizontal axis
represents time):

P1: W (x)1

P2: R (x)0

Depending upon how the program is written, it may or may not be
able to tolerate a situation like this.

But, in any case, the programmer must understand what can happen
when memory is accessed in a DSM system.

Sequential consistency

Sequential consistency: The result of any execution is the same as
if

• the memory operations of all processors were executed in
some sequential order, and

• the operations of each individual processor appear in this
sequence in the order specified by its program.

Sequential consistency does not mean that writes are instantly visible
throughout the system (it would be impossible to implement that
anyway).

The example below illustrates two sequentially consistent executions.

Note that a read from P2 is allowed to return an out-of-date value

(because it has not yet “seen” the previous write).

P1: W (x)1 P1: W (x)1

P2: R (x)0 R (x)1 P2: R (x)1 R (x)1

From this we can see that running the same program twice in a row in
a system with sequential consistency may not give the same results.

Lecture 18 Architecture of Parallel Computers 3

Causal consistency

The first step in weakening the consistency constraints is to
distinguish between events that are potentially causally connected
and those that are not.

Two events are causally related if one can influence the other.

P1: W (x)1

P2: R (x)1 W (y)2

Here, the write to x could influence the write to y, because

On the other hand, without the intervening read, the two writes would
not have been causally connected:

P1: W (x)1

P2: W (y)2

The following pairs of operations are potentially causally related:

• A read followed by a later write by the same processor.

• A write followed by a later read to the same location.

• The transitive closure of the above two types of pairs of
operations.

Operations that are not causally related are said to be concurrent.

Causal consistency: Writes that are potentially causally related
must be seen in the same order by all processors.

Concurrent writes may be seen in a different order by different
processors.

Here is a sequence of events that is allowed with a causally
consistent memory, but disallowed by a sequentially consistent
memory:

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

P1: W (x)1 W (x)3

P2: R (x)1 W (x)2

P3: R (x)1 R (x)3 R (x)2

P4: R (x)1 R (x)2 R (x)3

Why is this not allowed by sequential consistency?

Why is this allowed by causal consistency?

What is the violation of causal consistency in the sequence below?

P1: W (x)1

P2: R (x)1 W (x)2

P3: R (x)2 R (x)1

P4: R (x)1 R (x)2

Without the R (x)1 by P2, this sequence would’ve been causally

consistent.

Implementing causal consistency requires the construction of a
dependency graph, showing which operations depend on which other
operations.

Processor consistency

Causal consistency requires that all processes see causally related
writes from all processors in the same order.

The next step is to relax this requirement, to require only that writes
from the same processor be seen in order. This gives processor
consistency.

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScGginSL93-kw_LC3TZxy-4nCSUdOwtadvagrWAPp0qi04MPw/viewform

Lecture 18 Architecture of Parallel Computers 5

Processor consistency: Writes performed by a single processor are
received by all other processors in the order in which they were issued.

Writes from different processors may be seen in a different order by
different processors.

Processor consistency would permit this sequence that we saw
violated causal consistency:

P1: W (x)1

P2: R (x)1 W (x)2

P3: R (x)2 R (x)1

P4: R (x)1 R (x)2

Another way of looking at this model is that all writes generated by
different processors are considered to be concurrent.

Note: Some definitions of processor consistency require cache
coherence too. Processor consistency without cache coherence is
called PRAM consistency.

Exercise: What is the strongest consistency model that each of the
following satisfy?

P1: W (x)1

P2: R (x)1 W (x)2

P3: R (x)1 R (x)2

P4: R (x)2 R (x)1

P1: W (y)1

P2: R (x)1 W (y)2

P3: R (y)1 R (y)2

P4: R (y)2 R (y)1

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSc5ruXsbxffxbyi0zwznJd2kET_1ZuydSqDVGDj7bUk2dgLlw/viewform

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

P1: W (x)1

P2: R (x)1 W (y)2

P3: R (x)1 R (y)2

P4: R (y)2 R (x)1

Sometimes processor consistency can lead to counterintuitive results.
Assume that a and b are initialized to 0.

P1: P2:

a = 1;
if (b == 0)
 kill(p2);

b = 1;
if (a == 0)
 kill(p1);

At first glance, it seems that no more than one process should be
killed.

With processor consistency, however, it is possible for both to be
killed. Explain how.

What processor consistency guarantees

• SC ensures ordering of
o LD → LD
o LD → ST
o ST → LD
o ST → ST

• PC removes the ST→LD constraint, with significant implications
for ILP:

o Values can be loaded into other caches, even if there’s a
store to the same location in some write buffer.

o Loads do not wait for stores to complete (“perform”), they
access the cache right away (without being speculative!).

o A load dependent on an older store (in the same
processor) can “bypass” (directly obtain the store value
before it is stored).

• PC also removes write atomicity.

https://docs.google.com/forms/d/e/1FAIpQLScF_cQkDKzMuEULuA-97AzcErwvthzYRxESQF-zoRMpFXHBSQ/viewform?usp=sf_link

Lecture 18 Architecture of Parallel Computers 7

• How close is PC to programmers’ expectation?

o Most of the time, very close (e.g., post-wait
synchronization works correctly)

o Major OSes are ported to PC with relative ease

• Cases that cause errors in PC usually are due to races that
also happen in SC.

o However, debugging races in PC is more difficult.

Weak ordering

Processor consistency is still stronger than necessary for many
programs, because it requires that writes originating in a single
processor be seen in order everywhere.

But it is not always necessary for other processors to see writes in
order—or even to see all writes, for that matter.

Suppose a processor is in a tight loop in a critical section, reading
and writing variables.

Other processes aren’t supposed to touch these variables until the
process exits its critical section.

Load

Load

Store

Store

Load
Program
execution

This load
bypasses
2 stores

P1:
data = 2000;
flag = 1;

P2:
while (flag == 0) {};
print data;

P1:
flag1 = 1;
if (flag2 == 0)
 …

P2:
flag2 = 1;
if (flag1 == 0)
 …

PC fails to produce SC results, because PC does
not guarantee ordering betw. store & younger load

PC produces SC results, because
ordering between 2 stores is preserved.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

Under processor consistency, the memory has no way of knowing
that other processes don’t care about these writes, so it has to
propagate all writes to all other processors in the normal way.

To relax our consistency model further, we have to divide memory
operations into two classes and treat them differently.

• Accesses to synchronization variables are sequentially consistent.

• Accesses to other memory locations can be treated as concurrent.

This strategy is known as weak ordering.

With weak ordering, we don’t need to propagate accesses that occur
during a critical section.

We can just wait until the process exits its critical section, and then—

• make sure that the results are propagated throughout the
system, and

• stop other actions from taking place until this has happened.

Similarly, when we want to enter a critical section, we need to make
sure that all previous writes have finished.

These constraints yield the following definition:

Weak ordering: A memory system exhibits weak ordering iff—

1. Accesses to synchronization variables are sequentially
consistent.

2. No access to a synchronization variable can be performed until
all previous writes have completed everywhere.

3. No data access (read or write) can be performed until all
previous accesses to synchronization variables have been
performed.

Thus, by doing a synchronization before reading shared data, a
process can be assured of getting the most recent values written by
other processes before their immediately preceding Ss.

Lecture 18 Architecture of Parallel Computers 9

Note that this model does not allow more than one critical section to
execute at a time, even if the critical sections involve disjoint sets of
variables.

This model puts a greater burden on the programmer, who must
decide which variables are synchronization variables.

Weak ordering says that memory does not have to be kept up to date
between synchronization operations.

This is similar to how a compiler can put variables in registers for
efficiency’s sake. Memory is only up to date when these variables
are written back.

If there were any possibility that another process would want to read
these variables, they couldn’t be kept in registers.

This shows that processes can live with out-of-date values, provided
that they know when to access them and when not to.

The following is a legal sequence under weak ordering. Can you
explain why?

P1: W (x)1 W (x)2 S

P2: R (x)2 R (x)1 S

P3: R (x)1 R (x)2 S

Here’s a sequence that’s illegal under weak ordering. Why?

P1: W (x)1 W (x)2 S

P2: S R (x)1

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSf7TYHT8XBzd8DKoO78aWn4J6xAjE7o5NB8lQq48cD-rmhuXg/viewform

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 10

Release consistency

Weak ordering does not distinguish between entry to critical section
and exit from it.

Thus, on both occasions, it has to take the actions appropriate to
both:

• making sure that all locally initiated writes have been
propagated to all other memories, and

• making sure that the local processor has seen all previous
writes anywhere in the system.

Load/Store
:

Load/Store

Sync
h

Load/Store
:

Load/Store

Sync
h

Load/Store
:

Load/Store

Synch may be implemented as a lock
acquire/release

Before a synch, all previous ops must finish.
Before any ld/st, all previous synch must finish.

Why safe? Typically within a critical section, we have
made sure that only one process is inside, thus safe
to reorder anything in the critical section.

Outside a critical section, we usually do not care
about the order of mem ops (we would have used
synchronization if we had cared).

How to know whether a particular ld/st serves as a
synchronization point?

• Assume all atomic instructions are
synchronization points

o fetch-and-op, test-and-set

• Assume all load linked (LL) and store conditional
(SC) are synchronization points

P1

P2

Lecture 18 Architecture of Parallel Computers 11

If the memory could tell the difference between entry and exit of a
critical section, it would only need to satisfy one of these conditions.

Release consistency provides two operations:

• acquire operations tell the memory system that a critical section
is about to be entered.

• release operations say a c. s. has just been exited.

It is possible to acquire or release a single synchronization variable,
so more than one critical section can be in progress at a time.

When an acquire occurs, the memory will make sure that all the local
copies of shared variables are brought up to date.

When a release is done, the shared variables that have been
changed are propagated out to the other processors.

But—

• doing an acquire does not guarantee that locally made changes
will be propagated out immediately.

• doing a release does not necessarily import changes from other
processors.

Here is an example of a valid event sequence for release consistency
(A stands for “acquire,” and Q for “release” or “quit”):

P1: A (L) W (x)1 W (x)2 Q (L)

P2: A (L)R (x)2 Q (L)

P3: R (x)1

Note that since P3 has not done a synchronize, it does not

necessarily get the new value of x.

Release consistency: A system is release consistent if it obeys
these rules:

1. Before an ordinary access to a shared variable is performed, all
previous acquires done by the process must have completed.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 12

2. Before a release is allowed to be performed, all previous reads
and writes done by the process must have completed.

3. The acquire and release accesses must be processor
consistent.

If these conditions are met, and processes use acquire and release
properly, the results of an execution will be the same as on a
sequentially consistent memory.

Summary: Sequential consistency is possible, but costly. The model
can be relaxed in various ways.
Consistency models not using synchronization operations:

Type of
consistency

Description

Sequential
All processes see all shared accesses in same
order.

Causal
All processes see all causally related shared
accesses in the same order.

Processor
All processes see writes from each processor in
the order they were initiated. Writes from different
processors may not be seen in the same order,
except that writes to the same location will be seen
in the same order everywhere.

Consistency models using synchronization operations:

Type of
consistency

Description

Weak Shared data can only be counted on to be
consistent after a synchronization is done.

Release Shared data are made consistent when a critical
region is exited.

Lecture 18 Architecture of Parallel Computers 13

The following diagram contrasts various forms of consistency.

Sequential
consistency

Processor
consistency

Weak
ordering

Release
consistency

R
↓
W
↓
R
↓
R
↓
W
:
:

R
↓
R
↓
W
↓

{W, R}
:
:

{M, M}
↓

SYNCH
↓

{M, M}
↓

SYNCH
:
:

{M, M}
↓

ACQUIRE
↓

{M, M}
↓

RELEASE

 {M, M}
 ↓
RELEASE

 RELEASE
 :

