

Lecture 16 Architecture of Parallel Computers 1

Performance of coherence protocols

Cache misses have traditionally been classified into four categories:

• Cold misses (or “compulsory misses”) occur the first time that a
block is referenced.

• Conflict misses are misses that would not occur if the cache
were fully associative with LRU replacement.

• Capacity misses occur when the cache size is not sufficient to
hold data between references.

• Coherence misses are misses caused by the coherence
protocol.

The first three types occur in uniprocessors. The last is specific to
multiprocessors.

To these, Solihin adds context-switch (or “system-related”) misses,
which are related to task switches.

Let’s look at a uniprocessor example, a very small cache that has
only four lines.

Let’s look first at a fully associative cache, because which kind(s) of
misses can’t it have?

Here’s an example of a reference trace of 0, 2, 4, 0, 2, 4, 6, 8, 0.

Fully associative

 0 2 4 0 2 4 6 8 0

0 0 0 8

1 2 2 0

2 4 4

3 6

 cold cold cold hit hit hit cold cold capacity

In a fully associative cache, there are 5 cold misses, because 5
different blocks are referenced.

There are 3 hits.

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 2

The remaining reference (the third one to block 0) is not a cold miss.

It must be a capacity miss, because the cache doesn’t have room to
hold all five blocks.

We’ll assume that replacement is LRU; in this case, block 0 replaces
the LRU line, which at that point is line 1.

Now let’s suppose the cache is 2-way set associative. This means
there are two sets, one (set 0) that will hold the even-numbered
blocks, and one (set 1) that will hold the odd-numbered blocks.

2-way set-associative

 0 2 4 0 2 4 6 8 0

0 0 4 2 6 0

1 2 0 4 8

2

3

Since only even-numbered blocks are referenced in this trace, they
will all map to set 0.

This time, though, there won’t be any hits.

Classify each of these references as a hit or a particular kind of miss.

References that would have been hits in a fully associative cache, but
are misses in a less-associative cache, are conflict misses.

Finally, let’s look at a direct-mapped cache. Blocks with numbers
congruent to 0 mod 4 map to line 0; blocks with numbers congruent
to 1 mod 4 map to line 1, etc.

Direct mapped

 0 2 4 0 2 4 6 8 0

0 0 4 0 4 8 0

1

2 2 2 6

3

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSe1XY0QPyhVHMqEmRv8IE3Wsf-6qLPuDC9Acps6V06O7wPF3Q/viewform

Lecture 16 Architecture of Parallel Computers 3

Classify each of these references as a hit or a particular kind of miss.

Of the three conflict misses in the set-associative cache, one is a hit
here. Block 2 is still in the cache the second time it is referenced.
The other two are conflict misses in this cache.

Now, let’s talk about coherence misses.

Coherence misses can be divided into those caused by true sharing
and those caused by false sharing (see p. 236 of the Solihin text).

• False-sharing misses are those caused by having a line size
larger than one word. Can you explain?

• True-sharing misses, on the other hand, occur when

o a processor writes into a cache line, invalidating a copy of
the same block in another processors’ cache,

o after which

How can we attack each of the four kinds of misses?

• To reduce capacity misses, we can

• To reduce conflict misses, we can

• To reduce cold misses, we can

• To reduce coherence misses, we can

Similarly, context-switch misses can be divided into categories.

• Replaced misses are blocks that were replaced while the other
process(es) were active.

• Reordered misses are blocks that were shoved so far down the
LRU stack by the other process(es) that they are replaced soon
afterwards (when they otherwise would’ve stayed in the cache).

Which protocol is best? What cache line size is performs best?
What kind of misses predominate?

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSf2umRjPh4pGbS8mvew6MdT4XzTERlymxV5yJucajOpaV01xQ/viewform
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfDUOEAKYVfOUmQ2MYVESJs6ttgrUyxt2mpFDxKcEvTKdAqlQ/viewform
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfDUOEAKYVfOUmQ2MYVESJs6ttgrUyxt2mpFDxKcEvTKdAqlQ/viewform
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSckZWlbhUyU_7z18AZBcRnzMTouquueJQ6AM5icxkKAGFHsqQ/viewform

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 4

Simulations

Questions like these can be answered by simulation. Getting the
answer right is part art and part science.

Parameters need to be chosen for the simulator. Culler & Singh
(1998) selected a single-level 4-way set-associative 1 MB cache with
64-byte lines.

The simulation assumes an idealized memory model, which assumes
that references take constant time. Why is this not realistic?

The simulated workload consists of

• six parallel programs (Barnes, LU, Ocean, Radix, Radiosity,
Raytrace) from the SPLASH-2 suite and

• one multiprogrammed workload, consisting of mainly serial
programs.

Invalidate vs. update

with respect to miss rate

Which is better, an update or an invalidation protocol?

Let’s look at real programs.

Lecture 16 Architecture of Parallel Computers 5

M
is

s
 r

a
te

 (
%

)

M
is

s
 r

a
te

 (
%

)

L
U

/in
v

L
U

/u
p

d

O
c
e

a
n

/in
v

O
c
e

a
n

/m
ix

O
c
e

a
n

/u
p

d

R
a

y
tr

a
c
e

/in
v

R
a

y
tr

a
c
e

/u
p

d

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Cold

Capacity

True sharing

False sharing

R
a

d
ix

/in
v

R
a

d
ix

/m
ix

R
a

d
ix

/u
p

d

0.00

0.50

1.00

1.50

2.00

2.50

Where there are many coherence misses,

If there were many capacity misses,

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 6

with respect to bus traffic

Compare the

● upgrades in inv. protocol

with the

● updates in upd. protocol

Each of these operations
produces bus traffic.

Which are more frequent?

Which protocol causes
more bus traffic?

The main problem is that
one processor tends to
write a block multiple
times before another
processor reads it.

LU/inv

LU/upd

Ocean/inv

Upgrade/update rate (%)

Upgrade/update rate (%)

Ocean/m ix

Ocean/upd

Raytrace/inv

Raytrace/upd

0
.0

0

0
.5

0

1
.0

0

1
.5

0

2
.0

0

2
.5

0

Radix/inv

Radix/mix

Radix/upd

0
.0

0

1
.0

0

2
.0

0

3
.0

0

4
.0

0

5
.0

0

6
.0

0

7
.0

0

8
.0

0

This causes several bus transactions instead of one, as there would
be in an invalidation protocol.

Effect of cache line size

on miss rate

If we increase the line size, what happens to each of the following
classes of misses?

• capacity misses?

• conflict misses?

• true-sharing misses?

https://docs.google.com/forms/d/e/1FAIpQLSf9uMWH2peAZVq4-Y-OjtuDRzTVPuwYoiNIUlEUxK76fh64PQ/viewform?usp=sf_link

Lecture 16 Architecture of Parallel Computers 7

• false-sharing misses?

If we increase the line size, what happens to bus traffic?

So it is not clear which line size will work best.

Cold

Capacity

True sharing

False sharing

Upgrade

8

0

0.1

0.2

0.3

0.4

0.5

0.6

M
is

s
 r

a
te

 (
%

)

B
a

rn
e

s
/8

B
a

rn
e

s
/1

6

B
a

rn
e

s
/3

2

B
a

rn
e

s
/6

4

B
a

rn
e

s
/1

2
8

B
a

rn
e

s
/2

5
6

L
u

/8

L
u

/1
6

L
u

/3
2

L
u

/6
4

L
u

/1
2

8

L
u

/2
5

6

R
a

d
io

s
it
y
/8

R
a

d
io

s
it
y
/1

6

R
a

d
io

s
it
y
/3

2

R
a

d
io

s
it
y
/6

4

R
a

d
io

s
it
y
/1

2
8

R
a

d
io

s
it
y
/2

5
6

Results for the first three applications seem to show that which line
size is best?

For the second set of applications, which do not fit in cache, Radix
shows a greatly increasing number of false-sharing misses with

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 8

increasing block size.

Cold

Capacity

True sharing

False sharing

Upgrade

8 6 2 4 8 6 8

0

2

4

6

8

10

12

M
is

s
 r

a
te

 (
%

)

O
c
e

a
n

/8

O
c
e

a
n

/1
6

O
c
e

a
n

/3
2

O
c
e

a
n

/6
4

O
c
e

a
n

/1
2

8

O
c
e

a
n

/2
5

6

R
a

d
ix

/8

R
a

d
ix

/1
6

R
a

d
ix

/3
2

R
a

d
ix

/6
4

R
a

d
ix

/1
2

8

R
a

d
ix

/2
5

6

R
a

y
tr

a
c
e

/8

R
a

y
tr

a
c
e

/1
6

R
a

y
tr

a
c
e

/3
2

R
a

y
tr

a
c
e

/6
4

R
a

y
tr

a
c
e

/1
2

8

R
a

y
tr

a
c
e

/2
5

6

on bus traffic

Larger line sizes generate more bus traffic.

2 4

2
8

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Data bus

Address bus

B
a

rn
e

s
/1

6

T
ra

ff
ic

 (
b

y
te

s
/i
n

s
tr

u
c
ti
o

n
s
)

B
a

rn
e

s
/8

B
a

rn
e

s
/3

2

B
a

rn
e

s
/6

4

B
a

rn
e

s
/1

2
8

B
a

rn
e

s
/2

5
6

R
a

d
io

s
it
y
/8

R
a

d
io

s
it
y
/1

6

R
a

d
io

s
it
y
/3

2

R
a

d
io

s
it
y
/6

4

R
a

d
io

s
it
y
/1

2
8

R
a

d
io

s
it
y
/2

5
6

R
a

y
tr

a
c
e

/8

R
a

y
tr

a
c
e

/1
6

R
a

y
tr

a
c
e

/3
2

R
a

y
tr

a
c
e

/6
4

R
a

y
tr

a
c
e

/1
2

8

R
a

y
tr

a
c
e

/2
5

6

Lecture 16 Architecture of Parallel Computers 9

The results are different than for miss rate—traffic almost always
increases with increasing line size.

But address-bus traffic moves in the opposite direction from data-bus
traffic.

With this in mind, which line size appears to be best?

Context-switch misses

As cache size gets larger, there are fewer uniprocessor (“natural”)
cache misses.

But the number of context-switch misses may go up (mcf, soplex) or
down (namd, perlbench).

• Why could it go up?

• Why could it go down?

Reordered misses also decline as the cache becomes large. Why?

T
ra

ff
ic

 (
b
y
te

s
/i
n
s
tr

u
c
ti
o
n
)

T
ra

ff
ic

 (
b
y
te

s
/F

L
O

P
)

Data bus

Address bus

Data bus

Address bus

R
a
d
ix

/8

R
a
d
ix

/1
6

R
a
d
ix

/3
2

R
a
d
ix

/6
4

R
a
d
ix

/1
2
8

R
a
d
ix

/2
5
6

0

1

2

3

4

5

6

7

8

9

10

L
U

/8

L
U

/1
6

L
U

/3
2

L
U

/6
4

L
U

/1
2
8

L
U

/2
5
6

O
c
e
a
n
/8

O
c
e
a
n
/1

6

O
c
e
a
n
/3

2

O
c
e
a
n
/6

4

O
c
e
a
n
/1

2
8

O
c
e
a
n
/2

5
6

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSeYOXStZ6jU_FXfZ7JRBPQZpULKGj6xuQTwNYjWc63BgFDvnw/viewform

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 10

Physical cache organization

[Solihin §5.6] A cache is centralized (“united”) if its banks are
adjacent on the chip.

What are some advantages of a centralized structure?

• Uniform

• Interconnect between the
cache and the next level
(e.g., on-chip memory
controller)

A centralized cache usually uses
a crossbar (see also p. 167 of the
text).

P
ro

c
e
s
s
o
rs

Memories

Crossbar
Switch

…

…

A cache is distributed if its banks are scattered around the chip.

Lecture 16 Architecture of Parallel Computers 11

Usually, a portion of the L2 is placed near each L1; this is a tiled
arrangement.

What are some advantages of a distributed structure?

• In replication:

• In layout:

Hybrid centralized + distributed structure: There’s a tradeoff between
centralized and distributed.

• A large cache is uniformly slow, especially if it needs to handle
coherence.

• A distributed cache requires a lot of interconnections, and
routing latency is high if the cache is in too many places.

A compromise is to have
an L2 cache that is
distributed, but not as
distributed as the L1
caches.

Logical cache organization

[Solihin §5.7] Regardless of whether a cache is centralized or
distributed, there are several options in mapping addresses to tiles.

• A processor can be limited to accessing a single tile, the one
closest to it (private cache configuration).

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 12

o A block in the local cache may also exist in other caches;
the copies must be kept coherent by a coherence
protocol.

• All of the tiles can form a large logical cache. The address of a
block completely determines what tile it is found in (shared
1-tile associative).

o It may require a lot of hops to get from a processor to the
cache.

• A block can be mapped to two tiles (shared 2-tile associative).

o Block numbers are arranged to improve distance locality.

• Or, a block can be allowed to map to any tile (full tile
associativity).

o What is the upside?

o What is the downside?

Another option is a partitioned shared cache organization.

• Can you tell how many tiles each block can map to?

https://docs.google.com/forms/d/e/1FAIpQLSdI9vS7uvCKvLucuU9PcVFBNSHKWv3vP7s0HKQ57WxNc5e-2g/viewform?usp=sf_link
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSc9-DSc9SY8qiJ5cU2xMBo1GjXleEIwGzhIkvJG3kPi-jlxvQ/viewform

Lecture 16 Architecture of Parallel Computers 13

• Can you tell how many lines each block can map to?

• How does coherence play a role?

