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Shared vs. Distributed Memory

 What is the difference between ...
— SMP
— NUMA
— Cluster ?
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Small to Large Multiprocessors

« Small scale (2—30 processors): shared memory
— Often on-chip: shared memory (+ perhaps shared cache)
— Most processors have MP support out of the box
— Most of these systems are bus-based
— Popular in commercial as well as HPC markets
« Medium scale (64—-256). shared memory and clusters
— Clusters are cheaper
— Often, clusters of SMPs
« Large scale (> 256): few shared memory and many clusters
— SGI Altix 3300: 512-processor shared memory (NUMA)

— Large variety on custom/off-the-shelf components such as
Interconnection networks.

 Beowulf clusters: fast Ethernet
« Myrinet: fiber optics
 |IBM SP2: custom
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Shared Memory vs. No Shared Memory

* Advantages of shared-memory machines (vs. distributed
memory w/same total memory size)

— Support shared-memory programming

 Clusters can also support it via software shared
virtual memory, but with much coarser granularity
and higher overheads

— Allow fine-grained sharing

* You can’ t do this with messages—there’ s too
much overhead to share small items

— Single OS image
« Disadvantage of shared-memory machines
— Cost of providing shared-memory abstraction
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A Bus-Based Multiprocessor
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Wil This Parallel Code Work Correctly?

sum = 0;
begin parallel
ifene (1 ="1c d=2CNIEE
lock (id, myLock);
sum = sum + al[i];
unlock (id, myLock);
end parallel
print sum;
Suppose all] 3 and
al2]

Two issues:

 Will it print sum = 107?
« How can it support locking correctly?
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The Cache-Coherence Problem

sum = 0;
begin parallel C
for (i=1; i<=2; 1i++) {

lock (id, myLock);

sum = sum + af[il;

unlock (id, myLock);
end parallel

print sum; | | |
Suppose a[l] = 3 and I
al2] =7

* Will it print sum = 10?

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers



Cache-Coherence Problem lllustration

Start state. All caches
empty and main memory
has Sum = 0.
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Cache-Coherence Problem lllustration

P, reads Sum from memory.
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Cache-Coherence Problem lllustration

P, reads. Let’s assume this
comes from memory too.
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Cache-Coherence Problem lllustration

P, writes. This write goes
to the cache.
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Cache-Coherence Problem lllustration

P, writes. @ @
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Cache-Coherence Problem lllustration

P, reads.
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Cache-Coherence Problem

e Do Pl and P2 see the same sum?
 Does it matter iIf we use a WT cache?

 What if we do not have caches, or sum iIs uncacheable.
Wil it work?

 The code given at the start of the animation does not
exhibit the same coherence problem shown in the
animation. Explain why.
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Write-Through Cache Does Not Work

P, reads.
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Software Lock Using a Flag

« Here’ s simple code to implement a lock:

void lock (int process, int lvar) { // process is 0 or 1
while (lvar == 1) {} ;
lvar = 1;

}

void unlock (int process, int 1lvar) {
lvar = 0;

}

« WIll this guarantee mutual exclusion?
 Let s look at an algorithm that will ...

NC STATE UNIVERSITY
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* Bus-based multiprocessors

* The cache-coherence problem
« Peterson’s algorithm

* Coherence vs. consistency
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Peterson’ s Algorithm

int turn;
int interested[n]; // initialized to false

void lock (int process, int lvar) { // process is 0 or 1

int other = 1 - process;

interested[process] = TRUE;

turn = other;

while (turn == other && interested[other] == TRUE) {} ;
}
// Post: turn '= other or interested[other] == FALSE

void unlock (int process, int lvar) ({
interested[process] = FALSE;

}

« Acquisition of 1ock () occurs only if
l.interested[other] == FALSE: either the other process
has not competed for the lock, or it has just called unlock (),

or
2.turn !'= other: the other process is competing, has set the
turn to our process, and will be blocked in the while () loop
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No Race

// Proc O

interested[0] = TRUE;

turn = 1;

while (turn==1 && interested[1]==TRUE)
{}’;

// since interested[l] starts out FALSE,

// Proc 0 enters critical section

~~

// Proc 1

interested[l] = TRUE;

turn = 0;

while (turn==0 && interested[0]==TRUE)

{}’;

// since turn==0 && interested[0]==TRUE

// Proc 1 waits in the loop until Proc 0
// unlock // releases the lock

interested[0] = FALSE; ~\\\\\\\\‘

// now Proc 1 can exit the loop and
// acquire the lock
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Race

// Proc O // Proc 1
interested[0] = TRUE; interested[l] = TRUE;
turn = 1;

turn = 0;

while (turn==1 && interested[l1]==TRUE) while (turn==0 && interested[0]==TRUE)
{}; {};
// since turn == 0, // since turn==0 && interested[0]==TRUE
// Proc 0 enters critical section // Proc 1 waits in the loop until Proc 0
// releases the lock

// unlock

interested[0] = FALSE; \\\\\\\\\‘

// now Proc 1 can exit the loop and
// acquire the lock
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When Does Peterson’ s Alg. Work?

« Correctness depends on the global order of

A: interested[process] = TRUE;
B: turn = other;

e Thus, it will not work if—
— The compiler reorders the operations

« There’ s no data dependence, so unless the compiler is
notified, it may well reorder the operations

* This prevents compiler from using aggressive optimizations
used in serial programs

— The architecture reorders the operations
» Write buffers, memory controller
» Network delay for statement A

* |If turn and interested|[] are cacheable, A may result in
cache miss, but B in cache hit

* This is called the memory-consistency problem.
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Race on a Non-Sequentially Consistent Machine

// Proc O // Proc 1
interested[0] = TRUE; -____-~..-.~.~’
interested[l] = TRUE;
turn = 0;
turn = 1; I

while (turn==1 && interested[1]==TRUE)\‘
{}r;

while (turn==0 && interested[0]==TRUE)
{};
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Race on a Non-Sequentially Consistent Machine

// Proc O // Proc 1
interested[0] = TRUE; -____~~.~.~~~.‘~>

it = 0;

. reordered
turn = 1; l
while (turn==1 && interested[1l]==TRUE)
{}; N\,

// since interested[l] == FALSE, interested[l] = TRUE;
// Proc 0 enters critical section while (turn==0 && interested[0]==TRUE)

{1
// since turn==1,
// Proc 1 enters critical section

Can you explain what has gone wrong here?
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Coherence vs. Consistency

Cache coherence Memory consistency

Deals with the ordering of Deals with the ordering of
operations to a single memory operations to different memory
location. locations.
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Coherence vs. Consistency

Cache coherence Memory consistency

Deals with the ordering of Deals with the ordering of
operations to a single memory operations to different memory
location. locations.

Tackled by hardware Tackled by consistency models

* using coherence protocols. » supported by hardware, but

* Hw. alone guarantees correctness <« software must conform to the
but with varying performance model.
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Coherence vs. Consistency

Cache coherence Memory consistency

Deals with the ordering of Deals with the ordering of
operations to a single memory operations to different memory
location. locations.

Tackled by hardware Tackled by consistency models

* using coherence protocols. » supported by hardware, but

* Hw. alone guarantees correctness <« software must conform to the
but with varying performance model.

All protocols realize same abstraction Models provide diff. abstractions
« A program written for 1 protocol <« Compilers must be aware of the
can run w/o change on any other. model (no reordering certain
operations ...).
* Programs must “be careful” in
using shared variables.
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Two Approaches to Consistency

e Sequential consistency

— Multi-threaded codes for uniprocessors automatically run
correctly

— How? Every shared R/W completes globally in program
order

— Most intuitive but worst performance

* Relaxed consistency models

— Multi-threaded codes for uniprocessor need to be ported to
run correctly

— Additional instruction (memory fence) to ensure global
order between 2 operations

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers



Cache Coherence

e Do we need caches?
— Yes, to reduce average data access time.
— Yes, to reduce bandwidth needed for bus/interconnect.

 Sufficient conditions for coherence:
— Notation: Request,.(data)
— Write propagation:
* Rd;(X) must return the “latest™ Wr;(X)
— Write serialization:
* Wr;(X) and Wr, (X) are seen in the same order by everybody
— e.g., if | see w2 after w1, you shouldn’t see w2 before wl

— =» There must be a global ordering of memory
operations to a single location

— |Is there a need for read serialization?
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A Coherent Memory System: Intuition

e Uniprocessors
— Coherence between |/O devices and processors
— Infrequent, so software solutions work
e uncacheable memory, uncacheable operations, flush
pages, pass /O data through caches

« But coherence problem much more critical in multiprocessors
— Pervasive
— Performance-critical
— Necessitates a hardware solution

« * Note that “latest write” is ambiguous.

— Ultimately, what we care about is that any write is propagated
everywhere in the same order.

— Synchronization defines what “latest” means.
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Summary

« Shared memory with caches raises the problem of cache
coherence.

— Writes to the same location must be seen in the same
order everywhere.

« But this is not the only problem

— Writes to different locations must also be kept in order
If they are being depended upon for synchronizing
tasks.

— This Is called the memory-consistency problem
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