NC STATE UNIVERSITY

The Cache-Coherence
Problem

Lecture 6
(Chapter 6)

CSC/ECE 506: Architecture of Parallel Computers

Outline
 Bus-based multiprocessors
* The cache-coherence problem
 Peterson’ s algorithm
* Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Shared vs. Distributed Memory

 What is the difference between ...
— SMP
— NUMA
— Cluster ?

CSC/ECE 506: Architecture of Parallel Computers

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScgGCJu-5yR5fSvY3BNdgQNOc8-y6t_V5IcayhVx3AMTbKJ9g/viewform

Small to Large Multiprocessors

« Small scale (2—30 processors): shared memory
— Often on-chip: shared memory (+ perhaps shared cache)
— Most processors have MP support out of the box
— Most of these systems are bus-based
— Popular in commercial as well as HPC markets
« Medium scale (64—-256). shared memory and clusters
— Clusters are cheaper
— Often, clusters of SMPs
« Large scale (> 256): few shared memory and many clusters
— SGI Altix 3300: 512-processor shared memory (NUMA)

— Large variety on custom/off-the-shelf components such as
Interconnection networks.

 Beowulf clusters: fast Ethernet
« Myrinet: fiber optics
 |IBM SP2: custom

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

http://www.sys-con.com/node/44889

Shared Memory vs. No Shared Memory

* Advantages of shared-memory machines (vs. distributed
memory w/same total memory size)

— Support shared-memory programming

 Clusters can also support it via software shared
virtual memory, but with much coarser granularity
and higher overheads

— Allow fine-grained sharing

* You can’ t do this with messages—there’ s too
much overhead to share small items

— Single OS image
« Disadvantage of shared-memory machines
— Cost of providing shared-memory abstraction

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

A Bus-Based Multiprocessor

CPU
P-Pr o P-Pr o P-Pr o
Interrupt 256-KB module module module
controller L, $
Bus interface

v v v

< P-Pr o bus (64-bit data, 36-bit addr ess, 66 MHz) >

v ; v

PCl PCl Memory
bridge bridge controller

!I
PCl
VO | v
cards |
1-, 2-, or 4-w ay

interleaved
DRAM

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Outline

* Bus-based multiprocessors
 The cache-coherence problem
 Peterson’ s algorithm

* Coherence vs. consistency

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Wil This Parallel Code Work Correctly?

sum = 0;
begin parallel
ifene (1 ="1c d=2CNIEE
lock (id, myLock);
sum = sum + al[i];
unlock (id, myLock);
end parallel
print sum;
Suppose all] 3 and
al2]

Two issues:

 Will it print sum = 107?
« How can it support locking correctly?

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

The Cache-Coherence Problem

sum = 0;
begin parallel C
for (i=1; i<=2; 1i++) {

lock (id, myLock);

sum = sum + af[il;

unlock (id, myLock);
end parallel

print sum; | | |
Suppose a[l] = 3 and I
al2] =7

* Will it print sum = 10?

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem lllustration

Start state. All caches
empty and main memory
has Sum = 0.

Cache Cache Cache

== &5 &=

Bus

Trace
P, Read Sum @
P, Read Sum Main memoryl
P, Write Sum =3

P, Write Sum =7
P, Read Sum

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem lllustration

P, reads Sum from memory.

® ©

Cache Cache Cache

== S5 &

Bus
Trace
P, Read Sum @
P, Read Sum Main memoryl

P, Write Sum =3
P, Write Sum =7
P, Read Sum

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem lllustration

P, reads. Let’s assume this
comes from memory too.

Cache Cache Cache

IR _
— ﬁ

Trace |
P, Read Sum Mai
ain memor
P, Read Sum /

P, Write Sum =3
P, Write Sum =7
P, Read Sum

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem lllustration

P, writes. This write goes
to the cache.

® ©

Cache Cache Cache

.-

— e S

Bus

Trace |
P, Read Sum @
P. Read Sum Main memoryl

P, Write Sum =3
P, Write Sum =7
P, Read Sum

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem lllustration

P, writes. @ @

Cache Cache Cache

.- - -

——

Bus

Trace |
P, Read Sum mj
P, Read Sum Main memory
P, Write Sum =3

P, Write Sum =7

P, Read Sum

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem lllustration

P, reads.

. 6 ¢

ache Cache Cache

S —

(

Bus

Trace
P, Read Sum @
P, Read Sum Main memoryl

P, Write Sum =3
P, Write Sum =7

P, Read Sum

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem

e Do Pl and P2 see the same sum?
 Does it matter iIf we use a WT cache?

 What if we do not have caches, or sum iIs uncacheable.
Wil it work?

 The code given at the start of the animation does not
exhibit the same coherence problem shown in the
animation. Explain why.

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSccy1im_Qw8hFmlr9xx03lfXY35tx8IsZBHQTVJQeBtENepLQ/viewform

Write-Through Cache Does Not Work

P, reads.

. 6 ¢

ache Cache Cache

S —

(

Bus

Trace
P, Read Sum @
P, Read Sum Main memoryl

P, Write Sum =3
P, Write Sum =7

P, Read Sum

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Software Lock Using a Flag

« Here’ s simple code to implement a lock:

void lock (int process, int lvar) { // process is 0 or 1
while (lvar == 1) {} ;
lvar = 1;

}

void unlock (int process, int 1lvar) {
lvar = 0;

}

« WIll this guarantee mutual exclusion?
 Let s look at an algorithm that will ...

NC STATE UNIVERSITY

CSC/ECE 506: Architecture of Parallel Computers

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSeybMHXVu-xazbkggfdozfbzd7EqGXCCP8t6a-Ud1BcHbCxmQ/viewform

Outline

* Bus-based multiprocessors

* The cache-coherence problem
« Peterson’s algorithm

* Coherence vs. consistency

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Peterson’ s Algorithm

int turn;
int interested[n]; // initialized to false

void lock (int process, int lvar) { // process is 0 or 1

int other = 1 - process;

interested[process] = TRUE;

turn = other;

while (turn == other && interested[other] == TRUE) {} ;
}
// Post: turn '= other or interested[other] == FALSE

void unlock (int process, int lvar) ({
interested[process] = FALSE;

}

« Acquisition of 1ock () occurs only if
l.interested[other] == FALSE: either the other process
has not competed for the lock, or it has just called unlock (),

or
2.turn !'= other: the other process is competing, has set the
turn to our process, and will be blocked in the while () loop

CSC/ECE 506: Architecture of Parallel Computers

NC STATE UNIVERSITY

No Race

// Proc O

interested[0] = TRUE;

turn = 1;

while (turn==1 && interested[1]==TRUE)
{}’;

// since interested[l] starts out FALSE,

// Proc 0 enters critical section

~~

// Proc 1

interested[l] = TRUE;

turn = 0;

while (turn==0 && interested[0]==TRUE)

{}’;

// since turn==0 && interested[0]==TRUE

// Proc 1 waits in the loop until Proc 0
// unlock // releases the lock

interested[0] = FALSE; ~\\\\\\\\‘

// now Proc 1 can exit the loop and
// acquire the lock

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Race

// Proc O // Proc 1
interested[0] = TRUE; interested[l] = TRUE;
turn = 1;

turn = 0;

while (turn==1 && interested[l1]==TRUE) while (turn==0 && interested[0]==TRUE)
{}; {};
// since turn == 0, // since turn==0 && interested[0]==TRUE
// Proc 0 enters critical section // Proc 1 waits in the loop until Proc 0
// releases the lock

// unlock

interested[0] = FALSE; \\\\\\\\\‘

// now Proc 1 can exit the loop and
// acquire the lock

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

When Does Peterson’ s Alg. Work?

« Correctness depends on the global order of

A: interested[process] = TRUE;
B: turn = other;

e Thus, it will not work if—
— The compiler reorders the operations

« There’ s no data dependence, so unless the compiler is
notified, it may well reorder the operations

* This prevents compiler from using aggressive optimizations
used in serial programs

— The architecture reorders the operations
» Write buffers, memory controller
» Network delay for statement A

* |If turn and interested|[] are cacheable, A may result in
cache miss, but B in cache hit

* This is called the memory-consistency problem.

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Race on a Non-Sequentially Consistent Machine

// Proc O // Proc 1
interested[0] = TRUE; -____-~..-.~.~’
interested[l] = TRUE;
turn = 0;
turn = 1; I

while (turn==1 && interested[1]==TRUE)\‘
{}r;

while (turn==0 && interested[0]==TRUE)
{};

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Race on a Non-Sequentially Consistent Machine

// Proc O // Proc 1
interested[0] = TRUE; -____~~.~.~~~.‘~>

it = 0;

. reordered
turn = 1; l
while (turn==1 && interested[1l]==TRUE)
{}; N\,

// since interested[l] == FALSE, interested[l] = TRUE;
// Proc 0 enters critical section while (turn==0 && interested[0]==TRUE)

{1
// since turn==1,
// Proc 1 enters critical section

Can you explain what has gone wrong here?

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScmEDbeCbF9NHO0dM0OxZSQL4Z27GjM84UkTWllNIjDWHf8ow/viewform

Coherence vs. Consistency

Cache coherence Memory consistency

Deals with the ordering of Deals with the ordering of
operations to a single memory operations to different memory
location. locations.

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

Cache coherence Memory consistency

Deals with the ordering of Deals with the ordering of
operations to a single memory operations to different memory
location. locations.

Tackled by hardware Tackled by consistency models

* using coherence protocols. » supported by hardware, but

* Hw. alone guarantees correctness <« software must conform to the
but with varying performance model.

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

Cache coherence Memory consistency

Deals with the ordering of Deals with the ordering of
operations to a single memory operations to different memory
location. locations.

Tackled by hardware Tackled by consistency models

* using coherence protocols. » supported by hardware, but

* Hw. alone guarantees correctness <« software must conform to the
but with varying performance model.

All protocols realize same abstraction Models provide diff. abstractions
« A program written for 1 protocol <« Compilers must be aware of the
can run w/o change on any other. model (no reordering certain
operations ...).
* Programs must “be careful” in
using shared variables.

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Two Approaches to Consistency

e Sequential consistency

— Multi-threaded codes for uniprocessors automatically run
correctly

— How? Every shared R/W completes globally in program
order

— Most intuitive but worst performance

* Relaxed consistency models

— Multi-threaded codes for uniprocessor need to be ported to
run correctly

— Additional instruction (memory fence) to ensure global
order between 2 operations

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Cache Coherence

e Do we need caches?
— Yes, to reduce average data access time.
— Yes, to reduce bandwidth needed for bus/interconnect.

 Sufficient conditions for coherence:
— Notation: Request,.(data)
— Write propagation:
* Rd;(X) must return the “latest™ Wr;(X)
— Write serialization:
* Wr;(X) and Wr, (X) are seen in the same order by everybody
— e.g., if | see w2 after w1, you shouldn’t see w2 before wl

— =» There must be a global ordering of memory
operations to a single location

— |Is there a need for read serialization?

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

A Coherent Memory System: Intuition

e Uniprocessors
— Coherence between |/O devices and processors
— Infrequent, so software solutions work
e uncacheable memory, uncacheable operations, flush
pages, pass /O data through caches

« But coherence problem much more critical in multiprocessors
— Pervasive
— Performance-critical
— Necessitates a hardware solution

« * Note that “latest write” is ambiguous.

— Ultimately, what we care about is that any write is propagated
everywhere in the same order.

— Synchronization defines what “latest” means.

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

Summary

« Shared memory with caches raises the problem of cache
coherence.

— Writes to the same location must be seen in the same
order everywhere.

« But this is not the only problem

— Writes to different locations must also be kept in order
If they are being depended upon for synchronizing
tasks.

— This Is called the memory-consistency problem

NC STATE UNIVERSITY CSC/ECE 506: Architecture of Parallel Computers

	Slide 1: The Cache-Coherence Problem
	Slide 2: Outline
	Slide 3: Shared vs. Distributed Memory
	Slide 4: Small to Large Multiprocessors
	Slide 5: Shared Memory vs. No Shared Memory
	Slide 6: A Bus-Based Multiprocessor
	Slide 7: Outline
	Slide 8: Will This Parallel Code Work Correctly?
	Slide 9: The Cache-Coherence Problem
	Slide 10: Cache-Coherence Problem Illustration
	Slide 11: Cache-Coherence Problem Illustration
	Slide 12: Cache-Coherence Problem Illustration
	Slide 13: Cache-Coherence Problem Illustration
	Slide 14: Cache-Coherence Problem Illustration
	Slide 15: Cache-Coherence Problem Illustration
	Slide 16: Cache-Coherence Problem
	Slide 17: Write-Through Cache Does Not Work
	Slide 18: Software Lock Using a Flag
	Slide 19: Outline
	Slide 20: Peterson’s Algorithm
	Slide 21: No Race
	Slide 22: Race
	Slide 23: When Does Peterson’s Alg. Work?
	Slide 24: Race on a Non-Sequentially Consistent Machine
	Slide 25: Race on a Non-Sequentially Consistent Machine
	Slide 26: Coherence vs. Consistency
	Slide 27: Coherence vs. Consistency
	Slide 28: Coherence vs. Consistency
	Slide 29: Two Approaches to Consistency
	Slide 30: Cache Coherence
	Slide 31: A Coherent Memory System: Intuition
	Slide 32: Summary

