

Lecture 12 Architecture of Parallel Computers 1

[§5.2.6] Translation Lookaside Buffers

The CPU generates virtual addresses, which correspond to locations
in virtual memory.

In principle, the virtual addresses are translated to physical
addresses using a page table.

Page
table

Main
memory

0

1

2

3

1000

5000

8000

10000

Page #s

Phys.

addrs.

But this is too slow, so in practice,
a translation lookaside buffer
(TLB) is used.

It is like a special cache that is
indexed by page number.

If there is a hit on a page number,
then the address of the page in
memory (called the page-frame
address) is immediately obtained.

Therefore, the TLB and the cache must be accessed sequentially.

This adds an extra cycle in case of a hit.

(The page displacement is sometimes called the “page offset.” But we will call it
the displacement to avoid confusion with the block offset,” which we just call
“offset.”)

How can we avoid wasting this time?

TLB

Cache

Main memory

physical address

Virtual address: Page number Displacement

miss

tag index offset

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 2

Let’s look at what happens when a memory address is accessed.

line select (mux)

word select (mux)

MD
R

row
dec

tag
(27
bits)

31 5 4 3 2 0

tag
(27)

index
(2)

offset
(3)

set (holds 2 blocks) lines (8 bytes)

=? =?

MAR

What are the steps in cache access?

1.
2.
3.
4.
5.
6.
7.

We always need to read lines into the sense amplifiers and then
select the word (cf. the direct-mapped cache diagram in Lecture 4).

Now, if we know the index before address translation takes place, we
can perform steps while address translation is occurring.

There is a tradeoff between speed and power efficiency.

• For power efficiency, which order should should steps 1
through 4 be performed in?

• For maximum speed, which of steps 1 through 4 can be
performed in parallel?

1

2

3

4

5

6

7

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfpLD7kql3cUDtJ42duW7l3RLXXOCl5IeXkibZXPF8SJSZUzw/viewform
https://docs.google.com/forms/d/e/1FAIpQLScdeXtwiO0JTeGzb_heunO0-3BoPcGUfbJ0LVncM2rcR5L6Ig/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLScdeXtwiO0JTeGzb_heunO0-3BoPcGUfbJ0LVncM2rcR5L6Ig/viewform?usp=sf_link

Lecture 12 Architecture of Parallel Computers 3

Let’s take a look at address translation.

In this example, what is the page size (in bytes)?

How much physical memory is there?

Our goal is to allow the cache to be indexed before address
translation completes.

In order to do that, we need to have the index field be entirely
contained within the page displacement.

So, if the displacement is d bits wide, the width of the index is j bits,

and the offset is k bits, we must have j + k d.

0

(Virtual) page number Displacement

63 12 11

(Physical) page-frame # Displacement

24 12 11 0

TLB

Tag Offset

24 0

Index

TLB supplies
the physical page
number portion

(Virtual) page number Displacement

63 12 11 0

(Phys.) page-frame #

24 12

TLB

Tag

Offset

24

Index
ex

12

Data array

Word select

T
a

g
 a

rra
y

=?

0 11

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 4

Cache hit time reduces from two cycles to one!

… because the cache can now be indexed in parallel with TLB
(although the tag match uses output from the TLB).

But there are some constraints...

• Suppose our cache is direct mapped. Then the index field
just contains the line number. So, (line number || block
offset) must fit inside the page displacement.

 What is the largest the cache can be?

• If we want to increase the size of the cache, what can we
do?

Options:
• For new machines, select page size such that—

page size
cache size

associativity

• If page size is fixed, select associativity so that—

associativity
cache size
page size

Example: MC88110

• Page size = 4KB

• I-cache, D-cache are both: 8KB, 2-way set-associative
(4KB = 8KB / 2)

Example: VAX series

• Page size = 512B

• For a 16KB cache, need assoc. = (16KB / 512B) = 32-way
set. assoc.!

The textbook gives these three alternatives for cache indexing and
tagging. Answer some questions about them.

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfexi108iv43rWmiGawY_UrXIzJMer64nNkc34cUqXC_m1TRw/viewform

Lecture 12 Architecture of Parallel Computers 5

What’s the main disadantage of
physically indexed and tagged?

What is the organization we have
just been discussing (in the last
diagram)?

What is the main disadvantage
of virtually indexed and tagged?

Multilevel cache design

What are distinguishing features of the different cache levels of the
four-level design (from 2013) illustrated on p. 135 of the textbook?

 Distinguish-
ing feature

Size Access time Implement’n
techology

L1 cache

L2 cache

L3 cache

L4 cache

Main mem.

What are some advantages of a centralized cache?

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScf0D2KAbHP0D6JOpQQHZNHMB9HlaNTvirch03Cl1ZqY3rxrQ/viewform

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 6

What are some advantages of a banked structure?

Inclusion in multilevel caches

Answer these questions about inclusion policies.

Which kind(s) of caches move a block from one level to the other?

Which kind(s) of caches propagate up an eviction from the L2 to the
L1?

Which kind(s) of caches have to inform the L2 about a write to the
L1?

In an inclusive cache, can L2 associativity be greater than L1
associativity?

Find and describe the typo in this diagram.

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSewJv9NO2jPQPLhyLpg4hmbRJ3E5hsLo8WLaNH-psBHGjFcIg/viewform

Lecture 12 Architecture of Parallel Computers 7

Replacement policies

LRU is a good strategy for cache replacement.

In a set-associative cache, LRU is reasonably cheap to implement.
Why?

With the LRU algorithm, the lines can be arranged in an LRU stack,
in order of recency of reference. Suppose a string of references is—

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 8

a b c d a b e a b c d e

and there are 4 lines. Then the LRU stacks after each reference
are—

a b c d a b e a b c d e
 a b c d a b e a b c d
 a b c d a b e a b c
 a b c d d d e a b
* * * * * * * *

Notice that at each step:

• The line that is referenced moves to the top of the LRU
stack.

• All lines below that line keep their same position.

• All lines above that line move down by one position.

How many bits per set are required to keep track of LRU status in
both of the implementations described in the text?

• Matrix

• Pseudo-LRU

Lecture 12 Architecture of Parallel Computers 9

