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CSC/ECE 506: Architecture of Parallel Computers 
Sample Final Examination 

 
This was a 150-minute open-book test.  You were to answer five of the six questions. Each 
question was worth 20 points. If you answered all six questions, your five highest scores 
counted.Question 1. The following code is taken from the MOESI PrRd and BusRdX 
implementations. State-transition counters have been removed.  

(a) (2 points each) Fill in the blanks below (and then answer the two questions on the next page).  

Hint: You may need to use sharers_exclude() and c2c_supplier(). Answers are in red 

below. 

void MOESI::PrRd(ulong addr, int processor_number) { 

 …… 

 cache_line * line = find_line(addr); 

if (line == NULL || line->get_state() == I){ 

     read_misses++; 

cache_line *newline = allocate_line(addr); 

      if (c2c_supplier(addr, processor_number) > 0){ 

      cache2cache++; 

      }else{ 

      memory_transactions++; 

      } 

      if (sharers_exclude(addr, processor_number) > 0){ 

      I2S++; 

      newline->set_state(S); 

      }else{ 

      I2E++; 

      newline->set_state(E); 

      } 

      bus_reads++; 

       sendBusRd(addr, processor_number); 

     }else{ 

     ᠁ 

     } 

} 

void MOESI::BusRdX(ulong addr) { 

cache_line * line=find_line(addr); 

if (line != NULL){ 

     cache_state state; 

      state=line->get_state(); 

     if (state == S){ 

      invalidations++; 

      line->set_state(I); 

     }else if(state == O || state == M){ 

      invalidations++; 

      flushes++; 

      line->set_state(I); 

     }else if(state == E){ 

      invalidations++; 

      line->set_state(I); 

     } 

    } 

} 
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(b) (3 points) Why do we need to separate the counting of transaction type and state setting in 
PrRd()? 

Answer: Because in MOESI, only cache blocks in state O or M can be the supplier. So if there is 
such a cache block, it will be a cache-to-cache transaction; otherwise, main memory needs to 
provide the data, even if there are other caches that hold the block.  

(c) (3 points)  What is the difference between Flush and FlushOpt? Give an example from the 

code on the previous page. 

Answer: FlushOpt exists for performance enhancement while Flush is for the correctness of the 
MOESI protocol. One example would be the state == E in BusRdX(). Even though it has the 
same code with state == S, there will be a FlushOpt there if FlushOpt is counted. 

Question 2.  (a) Consider a 3-processor DSM with private write-back caches. It uses a full bit-
vector implementation (FBV) of the directory-based MESI protocol.  For simplicity’s sake, assume 
that a cache contains only 1 word, and we are only concerned with a single line in the cache. 

The table below uses one line to represent each operation.  The table columns show 

• for each cache, the state of its cache line, value in the cache line and the action induced 
by the protocol. A dash (“–“) indicates that the line is empty.  

• for the memory, the value in the corresponding memory cell, the directory state after the 
operation, and the action induced by the protocol.  

Initially, the caches are empty and the corresponding memory cell contains 1. 

Fill in the blanks in the table. Note that the number in the bracket refers to the order that 
messages are sent.  For example, when processor 0 reads the location, it sends a message to 
the home node [1].  The home node sends back a ReplyD [2]. 

 
Processor 0 Processor 1 Processor 2 Main Memory 

Op State Data Action State Data Action State Data Action Data State,FBV Action 

R0 E 1 [1]Read→H – – – – – – 1 EM,100 [2]ReplyD→P0 

R1 S 1 [3]Flush→H 
[3]Flush→P1 

S 1 [1]Read→H – – – 1 S,110 [2]Int→P0 

R2 S 1 – S 1 – S 1 [1]Read→H 1 S,111 [2]ReplyD→P2 

W1=4 I - [3]InvAck→P1 M 4 [1]Upgr→H I – [3]InvAck→P1 1 EM,010 [2]Reply→P1 
[2]Inv→P0` 
[2]Inv→P2 

W2=3 I – – I – [3]Flush→H 
[3]Flush→P2 
[3]InvAck→P2 

M 3 [1]ReadX→H 4 EM,001 [2]Reply→P2 
[2]Inv→P1 

R2 I – – I – – M 3 – 4 EM,001 – 

W0=7 M 7 [1]ReadX→H I – – I – [3]Flush→H 
[3]Flush→P0 
[3]InvAck→P0 

3 EM,100 [2]Reply→P0 
[2]Inv→P2 
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(b). There are several Read and ReadX processor transactions in the simplified directory-based 
MESI coherence protocol finite-state diagram below. There is no processor “Write” transactions to 
the main memory. Why? 

 

Answer: This is a write-back protocol. So, processor write don’t write to the main memory. The 
writes 

occur only on flushes when the directory is in EM state and there are any Read or ReadX 
requests or 

when the line is written back to memory due to eviction (write-back transaction of the processor). 

When the block is written back, these write transactions are generated by the cache controller 
and 

they don’t involve the processor and so are not shown in the diagram. 

(d).  How can an OTB (Outstanding Transaction Buffer) help with protocol races caused by out-
of-sync directory and protocol races caused by non-atomic messages? 

In other words, what are the properties or end effects achieved by using an OTB when facing the 
two protocol races mentioned above? 

Answer:  OTB temporarily stores the request messages and waiting for home node’s 
acknowledgement of request completion. It is used to confirm the completion of certain 
requests.  

For races caused by out-of-sync directory, the request being confirmed is Flush. The processor 
side will delay Read and ReadX requests to a block that is still being flushed. This is to ensure 
the block is clean when the directory receives a Read/ReadX request.  

For races caused by non-atomic messages, all requests need to be confirmed. The processor 
delays requests to a block if the previous request to that block has not been handled. This is to 
ensure each request to a block is performed atomically. 
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Question 3.  

(4 points each) For each code fragment below, put a check mark “✓ ” below all the consistency 

models under which they are legal. For each one that is not legal, write “X”. For partial credit, you 

must give a reason. Notice there are 2 variables in some code fragments. 

(a) 

P1: W(X) 1 W(Y) 2   R(X) 1 R(X) 3 

P2:   R(Y) 2 W(X) 3   

P3:    R(X) 1 R(Y) 2 R(X) 1 

 

Sequential Causal Processor PRAM 

    

Answer: 

Sequential Causal Processor PRAM 

X X ✓  ✓  

 

P1-W(Y) 2 and P2-W(X) 3 are causally related. But this write order is violated in P3. So it is not 
causally consistent and therefore not sequentially consistent.  

The only write order in the same processor is P1-W(X) 1 and P1-W(Y) 2. This is maintained in 
P3. Therefore it is PRAM consistent. 

The write order to X observed is P1-W(X) 1, P2-W(X)3. This is maintained by both P1 and P3 
(only sees 1 value). So it is coherent and therefore processor consistent. 

(b) 

P1: W(X) 2   R(X) 2 

P2: W(X) 3 R(X) 2   

P3:  R(X) 3 R(X) 2  

 

Sequential Causal Processor PRAM 

    

 

Answer: 
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Sequential Causal Processor PRAM 

✓  ✓  ✓  ✓  

 

All processor see P2-W(X)3, P1-W(X)2 in that order. So it is sequentially consistent. 

 

 

(c) 

P1: W(X) 1 R(X) 2 W(X) 3  

P2:   R(X) 2 R(X) 3 

P3: W(X) 2 R(X) 1  R(X)3 

 

Sequential Causal Processor PRAM 

    

 

Answer: 

Sequential Causal Processor PRAM 

X ✓  X ✓  

 

It is not coherent because the first 2 W(X) are seen by P1 and P3 in different orders.  

There are 2 write orders in question: P1-W(X) 1, P1-W(X) 3 and P3-W(X) 2, P1-W(X)3. The 
second pair is causally related.  

P2 could observe P1-W(X) 1, P3-W(X) 2, P1-W(X) 3. P3 could observe P3-W(X) 2, P1-W(X) 1, 
P1-W(X) 3. 2 write orders are both observed in both sequences. So it is causally and PRAM 
consistent. 

 

(d) 

P1: W(X) 0 W(X) 1 W(Y) 2  

P2:   R(X) 1  

P3:   R(Y) 2 R(X) 0 
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Sequential Causal Processor PRAM 

    

 

Answer: 

Sequential Causal Processor PRAM 

X ✓  X X 

 

It is causally consistent because there are no causal related operations. It is not PRAM because 
the write order from P1 is violated in P3.  

 

(e) 

P1: W(X) 0 W(X) 1 R(Y) 0  

P2: W(Y) 0 W(Y) 1 R(X) 0  

P3:   R(X) 0 R(X) 1 

 

Sequential Causal Processor PRAM 

    

Answer: 

Sequential Causal Processor PRAM 

X ✓  ✓  ✓  

 

It is causally consistent because there are no causal related operations. It is PRAM consistent 
because all processor can observe 0, 1 order for both X and Y variable. It is coherent and 
therefore processor consistency for the same reason. 

However, it is not sequential consistent because it will result in a loop if you try to order P1 and 
P2’s operations in some sequential order. “...; each processor can order the other’s write after its 
own read”. 
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Question 4.  This diagram shows the contents of a cache block being shared by processors P1 

and P2, using the Dragon protocol 

 

Given the sequence of reads and writes by P1 and P2 shown at the right, 

show the state of the cache blocks on P1 and P2.after each operation, 

indicating what processor and bus operations are performed for each 
operation.   Assume that the cache block starts out in the shared state in 
both processors.  

Answer: The answers are underlined in the table below. 

 

P1: WRITE W = 60 

P2: READ Z 

P2: READ W 

P1: READ X 

P1: READ Z  

P2: WRITE Y = 70 

P2: WRITE X = 40 

P2: READ Y 

P1: WRITE Z = 50 

Action P1 P2 Processor and P1 block after  P2 block after 
(using Dragon 
prot.) 

state state  bus operations w x y z  w x y z 

P1: WRITE W = 60 Sm Sc PrWr, 
BusUpd(C) 

60 10 15 20  60 10 15 20 

P2: READ Z  Sm Sc PrRd  60 10 15 20  60 10 15 20 

P2: READ W  Sm Sc PrRd 60 10 15 20  60 10 15 20 

P1: READ X  Sm Sc PrRd 60 10 15 20  60 10 15 20 

P1: READ Z  Sm Sc PrRd  60 10 15 20  60 10 15 20 

P2: WRITE Y = 70 Sc Sm PrWr, 
BusUpd(C) 

60 10 70 20  60 10 70 20 

P2: WRITE X = 40 Sc Sm PrWr, 
BusUpd(C) 

60 40 70 20  60 40 70 20 

P2: READ Y Sc Sm PrRd  60 40 70 20  60 40 70 20 

P1: WRITE Z = 50 Sm Sc PrWr, 
BusUpd(C) 

60 40 70 50  60 40 70 50 

  

Question 5.  In this sequence, assume that initially, flag0 = flag1 = 0, and A = B = u = v = w = 2.   

Note that not all variables are initialized to 0! 

P0: 

S0: A = 1; 

S1: B = 5; 

S2: u = B; 

S3: flag0 = 1; 

P1:  

S4: while (!flag0){};  

S5: v = B – A; 

S6: w = A; 

S7: flag1 = 1; 

P2:  

S8: while (!flag1){}; 

S9: x = u × w + v; 

(a) (6 points) What values could be produced for x under processor consistency?  List all such 

values. 
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Answer:  All writes from each processor must be seen in order by other processors.  This means 
that P1 cannot progress past S4 until it sees all changes written by P0.  So the only possible 

value for v is 5-1 = 4.  However, P2 could see changes by P1 before it sees changes by P0, 

meaning that u could be 2 or 5 when x = u × w + v is calculated.  This would yield the value 6 

or 9 for x. 

(b) (6 points)  Which writes by different processors are causally related in this sequence?  Simply 
list pairs of statements (e.g., {S0, S4}) where the write in the second statement is causally related 
to the first.  Just list the pairs that are directly related, don’t write out the transitive closure.  And 
don’t write down any pairs that are executed by the same processor. 

Answer:  {S0, S5}, {S0, S6}, {S1, S5}, {S2, S9}, {S3, S4}, {S5, S9}, {S6, S9}, {S7, S8} 

(c) (4 points)  What values could be produced for x under causal consistency?  Explain how you 

have determined this. 

Answer: Only 9.  We have a sequence of causally related writes, S0 → S1 → S3 → S4 → S7 → 

S8 → S9.  These writes must be kept in order, assuring that S9 sees the up-to-date version of all 
the variables. 

(d) (4 points) If weak ordering is in use, what is the minimum set of variables that should be 
treated as synchronization variables in order to assure the same results as under sequential 
consistency?  Explain why fewer synchronization variables will not suffice. 

Answer:  There need to be two synchronization variables, which are flag0 and flag1.  If there 

are less than two synchronization variables, then the writes by one processor are not seen by the 
other processors in time so that the most recent updated values cannot be used by the other 
processors even when they have the updated values in their memory location. This would lead to 
inappropriate results. 

In the above sequence, if we don’t have the proper synchronization variables then the final result 
of x could have the values like 6, 13, 10, 14, 11, 7, 12, 6, 3, 4, 8, 5 etc., instead of the original 

value, which has to be 9. 

Question 6. The following CUDA code is for matrix 

multiplication using shared memory (this is called local 

memory tiling).  We decompose matrices A and B into 

non-overlapping submatrices of size BLOCK_SIZE× 

BLOCK_SIZE.  The thread blocks are also 

BLOCK_SIZE × BLOCK_SIZE. Each thread in a thread 

block computes a portion of the sum. 

When each thread has computed this sum, we can load 

the next BLOCK_SIZE × BLOCK_SIZE submatrices 

from A and B, and continue adding the term-by-term 

products to our result in C.  After all submatrices have 

been processed, we will have computed our result matrix C. The kernel code for this portion of 

the program is shown below.  Fill in the blanks in the code (2 points each), place barriers 

(_syncthreads()) at the 2 places (out of the 6 places circled) where they’re needed (2 points 

each), and explain your reasoning for each barrier placement (3 points each).  

Answer: 

  global   void MatMulKernel(Matrix A, Matrix B, Matrix C) { 

// Block row and column 
int blockRow = blockIdx.y, blockCol = blockIdx.x; 
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 // Each thread block computes one sub-matrix Csub of C 

Matrix Csub = GetSubMatrix(C, blockRow, blockCol); 

// Each thread computes 1 element of Csub, accumulating results into Cvalue 
Cvalue = 0.0; 

// Thread row and column within Csub  
int row = threadIdx.y, col = threadIdx.x; 

// Loop over all the sub-matrices of A and B required to compute 
Csub  
for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) { 

 // Get sub-matrices Asub of A and Bsub of B  
Matrix Asub = GetSubMatrix(A, blockRow, m);  
Matrix Bsub = GetSubMatrix(B, m, blockCol); 

// Shared memory used to store Asub and Bsub respectively 

  shared   float As[BLOCK_SIZE][BLOCK_SIZE]; 

  shared   float Bs[BLOCK_SIZE][BLOCK_SIZE]; 
 
// Load Asub and Bsub from device memory to shared memory 

// Each thread loads one element of each sub-matrix 
As[row][col] = GetElement(Asub, row, col); Bs[row][col] = GetElement(Bsub, row, col); 

// Multiply Asub and Bsub together  

for (int e = 0; e < BLOCK_SIZE; ++e)  

Cvalue += As[row][e] * Bs[e][col]; 
} 

// Each thread writes one element of Csub to memory  

SetElement(Csub, row, col, Cvalue); 

} 

 

 

You may identify the two places synchronization is needed and write your reasons here, or you 
may circle the places and write your reasoning on the previous page. 

Where does the first _syncthread() go? 

Answer:    

Why does it go here? 

Answer:  With the first call to  syncthreads() we insure that every entry of the submatrices of 
A and B have been loaded into shared memory before any thread begins its computations 
based on those values. 

Where does the second _syncthread() go? 

Answer:   

Why does it go here? 

Answer:  The second call to  syncthreads() ensures that every element of the submatrix of C 
has been processed before we begin loading the next submatrix of A or B into shared memory.
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