

Lecture 4 Architecture of Parallel Computers 1

Cache memories

[§5.1] A cache is a small, fast memory which is transparent to the
processor.

• The cache duplicates information that is in main memory.

• With each data block in the cache, there is associated an
identifier or tag. This allows the cache to be content
addressable.

37

26

49

7

information information
26?

Tag
Key

• Caches are smaller
and faster than main
memory.

• Secondary storage, on
the other hand, is
larger and slower.

Cache

Main memory

Secondary storage

• A cache miss is the term analogous to a page fault. It
occurs when a referenced word is not in the cache.

° Cache misses must be handled much more quickly
than page faults. Thus, they are handled in hardware.

• Caches can be organized according to four different
strategies:

° Direct
° Fully associative
° Set associative
° Sectored

© 2023 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2023 2

• A cache implements several different policies for retrieving

and storing information, one in each of the following
categories:

° Placement policy—determines where a block is placed
when it is brought into the cache.

° Replacement policy—determines what information is
purged when space is needed for a new entry.

° Write policy—determines how soon information in the
cache is written to lower levels in the memory hierarchy.

Cache memory organization

[§5.2] Information is moved into and out of the cache in blocks.
When a block is in the cache, it occupies a cache line. Blocks are
usually larger than one byte,

• to take advantage of locality in programs, and
• because memory may be organized so that it can overlap

transfers of several bytes at a time.

The block size is the same as the line size of the cache.

A placement policy determines where a particular block can be
placed when it goes into the cache. E.g., is a block of memory
eligible to be placed in any line in the cache, or is it restricted to a
single line?

In our examples, we assume—

• The cache contains 2048 bytes,
 with 16 bytes per line
 Thus it has 128 lines.

• Main memory is made up of 256K bytes, or 16384 blocks.
 Thus an address consists of

Lecture 4 Architecture of Parallel Computers 3

We want to structure the cache to achieve a high hit ratio.

• Hit—the referenced information is in the cache.
• Miss—referenced information is not in cache, must be read

in from main memory.

Hit ratio
Number of hits

Total number of references

We will study caches that have three different placement policies
(direct, fully associative, set associative).

Direct

Only 1 choice of where to place a block.

block i line i mod 128

Each line has its own tag associated with it.

When the line is in use, the tag contains the high-order seven bits of
the main-memory address of the block.

 Main memory

Block 0
Block 1
Block 2

Block 127
Block 128
Block 129

Block 255
Block 256
Block 257

Block 4095
Block 4096

Block 16383

•
•

•
•

•
•

•
•

Tag

Tag

Tag

Line 1

Line 127

7 bits

Cache

Tag Index Offset

7 7 4

Main-memory address

Line 0

© 2023 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2023 4

To search for a word in the cache,

1. Determine what line to look in (easy; just select bits 10–4 of
the address).

2. Compare the leading seven bits (bits 17–11) of the address

with the tag of the line. If it matches, the block is in the
cache.

3. Select the desired bytes from the line.

 Advantages:

 Fast lookup (only one comparison needed).

 Cheap hardware (only one tag needs to be checked).

 Easy to decide where to place a block

 Disadvantage: Contention for cache lines.

Exercise: What would the size of the tag, index, and offset fields be
if—

 the line size from our example were doubled, without changing
the size of the cache? 7, 6, 5

 the cache size from our example were doubled, without
changing the size of the line? 6, 8, 4

 an address were 32 bits long, but the cache size and line size
were the same as in the example? 21, 7, 4

Fully associative

Any block can be placed in any line in the cache.

This means that we have 128 choices of where to place a block.

 block i any free (or purgeable) cache location

Lecture 4 Architecture of Parallel Computers 5

 Main memory

Tag

Tag

Tag

Line 0

Line 1

Line 127

14 bits

Cache

Tag Offset

4

Main-memory address

14

Block 0
Block 1

Block

Block 16382
Block 16383

•
•

•
•

•
•

i

•
•

Each line has its own tag associated with it.

When the line is in use, the tag contains the high-order fourteen bits
of the main-memory address of the block.

To search for a word in the cache,

1. Simultaneously compare the leading 14 bits (bits 17–4) of
the address with the tag of all lines. If it matches any one,
the block is in the cache.

2. Select the desired bytes from the line.

 Advantages:

 Minimal contention for lines.

 Wide variety of replacement algorithms feasible.

Exercise: What would the size of the tag and offset fields be if—

 the line size from our example were doubled, without changing
the size of the cache? 13, 5

© 2023 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2023 6

 the cache size from our example were doubled, without
changing the size of the line? 14, 4

 an address were 32 bits long, but the cache size and line size
were the same as in the example? 28, 4

 Disadvantage:

 The most expensive of all organizations, due to the high
cost of associative-comparison hardware.

A flowchart of cache operation: The process of searching a fully
associative cache is very similar to using a directly mapped cache.
Let us consider them in detail.

Page
number

Byte within
page

Virtual address

Search TLB

TLB hit?

Select TLB victim
to be replaced

Translate virt. addr.
to physical addr.

No

Enter new
(virt., phys.)

addr. pair in TLB

Yes
Block

number
Byte within

block

Update
replacement status

of TLB entries

Search tags
of cache lines

Cache
hit?

No

Yes

Fetch block from
main memory

Select cache victim
to be replaced

Store new block
in cache

Update
replacement status

of cache entries

Fetch block
from cache

Select desired
bytes from block

Send byte(s)
to processor

Lecture 4 Architecture of Parallel Computers 7

Which steps would be different if the cache were directly mapped?

Set associative

1 < n < 128 choices of where to place a block.

A compromise between direct and fully associative strategies.

The cache is divided into s sets, where s is a power of 2.

block i any line in set i mod s

Each line has its own tag associated with it.

When the line is in use, the tag contains the high-order eight bits of
the main-memory address of the block. (The next six bits can be
derived from the set number.)

Main memory

Block 0
Block 1

Block 16383

•
•

•
•

•
•

Tag
Line 0

8 bits
Cache

Tag Offset

4

Main-memory address

•
•

Tag
Line 1

Tag
Line 2

Tag
Line 3

Tag
Line 126

Tag
Line 127

Block 4095

Block 65

Block 63
Block 64

Set 0

Set 1

Set 63

Index

8 6

© 2023 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2023 8

Exercise: What would the size of the tag, index, and offset fields be
if—

 the line size from our example were doubled, without changing
the size of the cache? 8, 5, 5

 the set size from our example were doubled, without changing
the size of a line or the cache? 9, 5, 4

 the cache size from our example were doubled, without
changing the size of the line or a set? 7, 7, 4

 an address were 32 bits long, but the cache size and line size
was the same as in the example? 22, 6, 4

To search for a word in the cache,

1. Select the proper set (i mod s).

2. Simultaneously compare the leading 8 bits (bits 17–10) of
the address with the tag of all lines in the set. If it matches
any one, the block is in the cache.

 At the same time, the (first bytes of) the lines are also being
read out so they will be accessible at the end of the cycle.

3. If a match is found, gate the data from the proper block to
the cache-output buffer.

4. Select the desired bytes from the line

= ?

= ?

= ?

= ?

Desired block # Tags from set

Select

Select

Select

Select

Lines from set

Data outCache output-
data buffer

Lecture 4 Architecture of Parallel Computers 9

• All reads from the cache occur as early as possible, to
allow maximum time for the comparison to take place.

• Which line to use is decided late, after the data have
reached high-speed registers, so the processor can receive
the data fast.

Factors influencing line lengths:

• Long lines higher hit ratios.

• Long lines less memory devoted to tags.

• Long lines longer memory transactions (undesirable in a

multiprocessor).

• Long lines more write-backs (explained below).

For most machines, line sizes between 32 and 128 bytes perform
best.

If there are b lines per set, the cache is said to be b-way set
associative. How many way associative was the example above?

The logic to compare 2, 4, or 8 tags simultaneously can be made
quite fast.

But as b increases beyond that, cycle time starts to climb, and the
higher cycle time begins to offset the increased associativity.

Almost all L1 caches are less than 8-way set-associative. L2 caches
often have higher associativity.

Two-level caches

Write policy

[§5.2.3] Answer these questions, based on the text.

What are the two write policies mentioned in the text?

© 2023 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2023 10

Which one is typically used when a block is to be written to main
memory, and why?

Which one can be used when a block is to be written to a lower level
of the cache, and why?

Can you explain what error correction has to do with the choice of
write policy?

Explain what a parity bit has to do with this.

Principle of inclusion

[§5.2.4] To analyze a second-level cache, we use the principle of
inclusion—a large second-level cache includes everything in the first-
level cache.

We can then do the analysis by assuming the first-level cache did not
exist, and measuring the hit ratio of the second-level cache alone.

How should the line length in the second-level cache relate to the line
length in the first-level cache? The line length in the 2nd-level cache
should not be shorter than the line length in the 1st-level cache

When we measure a two-level cache system, two miss ratios are of
interest:

• The local miss rate for a cache is the

misses experienced by the cache

number of incoming references

 To compute this ratio for the L2 cache, we need to know
the number of misses in the L1 cache.

Lecture 4 Architecture of Parallel Computers 11

• The global miss rate of the cache is

L2 misses

of references made by processor

 This is the primary measure of the L2 cache.

What conditions need to be satisfied in order for inclusion to hold?

• L2 associativity must be L1 associativity, irrespective of
the number of sets.

 Otherwise, more entries in a particular set could fit into the
L1 cache than the L2 cache, which means the L2 cache
couldn’t hold everything in the L1 cache.

• The number of L2 sets has to be the number of L1 sets,
irrespective of L2 associativity.

 (Assume that the L2 line size is L1 line size.)

 If this were not true, multiple L1 sets would depend on a
single L2 set for backing store. So references to one L1
set could affect the backing store for another L1 set.

• All reference information from L1 is passed to L2 so that it
can update its replacement bits.

Even if all of these conditions hold, we still won’t have logical
inclusion if L1 is write-back. (However, we will still have statistical
inclusion—L2 usually contains L1 data.)

Lecture 5 Architecture of Parallel Computers 1

[§5.2.6] Translation Lookaside Buffers

The CPU generates virtual addresses, which correspond to locations
in virtual memory.

In principle, the virtual addresses are translated to physical
addresses using a page table.

Page
table

Main
memory

0
1
2

3

1000

5000

8000

10000

Page #s

Phys.
addrs.

But this is too slow, so in practice,
a translation lookaside buffer
(TLB) is used.

It is like a special cache that is
indexed by page number.

If there is a hit on a page number,
then the address of the page in
memory (called the page-frame
address) is immediately obtained.

Therefore, the TLB and the cache must be accessed sequentially.

This adds an extra cycle in case of a hit.

(The page displacement is sometimes called the “page offset.” But we will call it
the displacement to avoid confusion with the block offset,” which we just call
“offset.”)

How can we avoid wasting this time?

TLB

Cache

Main memory

physical address

Virtual address: Page number Displacement

miss

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

Let’s look at what happens when a memory address is accessed.

line select (mux)

word select (mux)

MD

row
dec

tag
(27

)

31 5 4 3 2 0
tag
(2)

index
(2)

offset
(3)

set (holds 2 blocks) lines (8 bytes)

=? =?

MAR

What are the steps in cache access?

1. Access the set that could contain the sought-after address.
2. Pull down the tags into the sense amplifiers (purple).
3. Compare the tags with the tag of the sought-after address.
4. Read all lines in the set into the sense amplifiers (purple).
5. Select the line that actually contains the sought-after address.
6. Select the sought-after byte(s) or word(s) to return.
7. Return the sought-after byte(s) or word(s) to the processor.

We always need to read lines into the sense amplifiers and then
select the word (cf. the direct-mapped cache diagram in Lecture 4).

Now, if we know the index before address translation takes place, we
can perform steps 1, 2, and 4 while address translation is occurring.

There is a tradeoff between speed and power efficiency.

 For power efficiency, which order should should steps 1
through 4 be performed in? 1, 2, 3, 4

 For maximum speed, which of steps 1 through 4 can be
performed in parallel? 2 & 4

1

2

3

4

5

6

7

Lecture 5 Architecture of Parallel Computers 3

Let’s take a look at address translation.

In this example, what is the page size? 2^12 = 4096 bytes

How much physical memory is there? 225 bytes

Our goal is to allow the cache to be indexed before address
translation completes.

In order to do that, we need to have the index field be entirely
contained within the page displacement.

So, if the displacement is d bits wide, the width of the index is j bits,
and the offset is k bits, we must have j + k d.

0

(Virtual) page number Displacement

63 12 11

(Physical) page-frame # Displacement

24 12 11 0

TLB

Tag Offset

24 0

Index

TLB supplies
the physical page
number portion

(Virtual) page number Displacement

63 12 11 0

(Phys.) page-frame #

24 12

TLB

Tag

Offset

24

Index

12

Data array

Word select

T
ag array

=?

0 11

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

Cache hit time reduces from two cycles to one!

… because the cache can now be indexed in parallel with TLB
(although the tag match uses output from the TLB).

But there are some constraints...

• Suppose our cache is direct mapped. Then the index field
just contains the line number. So, (line number || block
offset) must fit inside the page displacement.

 What is the largest the cache can be? 2^12 = 1 page

• If we want to increase the size of the cache, what can we
do? Make it set-associative, because this increases the
tag width and decreases the width of the index.

Options:
• For new machines, select page size such that—

page size
cache size

associativity

• If page size is fixed, select associativity so that—

associativity
cache size
page size

Example: MC88110

• Page size = 4KB

• I-cache, D-cache are both: 8KB, 2-way set-associative
(4KB = 8KB / 2)

Example: VAX series

• Page size = 512B

• For a 16KB cache, need assoc. = (16KB / 512B) = 32-way
set. assoc.!

The textbook gives these three alternatives for cache indexing and
tagging. Answer some questions about them.

Lecture 5 Architecture of Parallel Computers 5

What’s the main disadantage of
physically indexed and tagged?

What is the organization we have
just been discussing (in the last
diagram)?

What is the main disadvantage
of virtually indexed and tagged?

Multilevel cache design

What are distinguishing features of the different cache levels of the
four-level design (from 2013) illustrated on p. 135 of the textbook?

 Distinguish-
ing feature

Size Access time Implement’n
techology

L1 cache Split 32KB–64KB 2–3 cycles SRAM

L2 cache Unified 256KB–1MB 10–20 cycle SRAM

L3 cache Banked 8–80 MB 20–50 cycle DRAM

L4 cache Off-chip 30–100 MB 50–80 cycle DRAM

Main mem. Off-chip 4–32 GB 120–400 cy DRAM

What are some advantages of a centralized cache?

Interconnect between L2 and other levels is simplified, because it can
be in one place.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

Movement of data between banks is simplified (e.g., in virt. Indexed &
tagged caches).

What are some advantages of a banked structure?

A portion of the cache is close to each processor, which helps speed
access time.

More scalable. A single tile (core, L1 caches, 1 bank of L2) can be
designed, & stamped as many times as needed.

Inclusion in multilevel caches

Answer these questions about inclusion policies.

Which kind(s) of caches move a block from one level to the other?

Which kind(s) of caches propagate up an eviction from the L2 to the
L1?

Which kind(s) of caches have to inform the L2 about a write to the
L1?

In an inclusive cache, can L2 associativity be greater than L1
associativity?

Find and describe the typo in this diagram.

Lecture 5 Architecture of Parallel Computers 7

Replacement policies

LRU is a good strategy for cache replacement.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

In a set-associative cache, LRU is reasonably cheap to implement.
Why? The number of lines you need to check is small (= associativity
of the cache)

With the LRU algorithm, the lines can be arranged in an LRU stack,
in order of recency of reference. Suppose a string of references is—

a b c d a b e a b c d e

and there are 4 lines. Then the LRU stacks after each reference
are—

a b c d a b e a b c d e
 a b c d a b e a b c d
 a b c d a b e a b c
 a b c d d d e a b
* * * * * * * *

Notice that at each step:

• The line that is referenced moves to the top of the LRU
stack.

• All lines below that line keep their same position.

• All lines above that line move down by one position.

How many bits per set are required to keep track of LRU status in
both of the implementations described in the text?

 Matrix 16

 Pseudo-LRU 3

Lecture 5 Architecture of Parallel Computers 9

4/1/2024

1

CSC/ECE 506: Architecture of Parallel Computers

The Cache-Coherence
Problem

The Cache-Coherence
Problem

Lecture 13

(Chapter 6)

Lecture 13

(Chapter 6)

1

CSC/ECE 506: Architecture of Parallel Computers

Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Shared vs. Distributed Memory

• What is the difference between …
– SMP

– NUMA

– Cluster ?

CSC/ECE 506: Architecture of Parallel Computers

Small to Large Multiprocessors
• Small scale (2–30 processors): shared memory

– Often on-chip: shared memory (+ perhaps shared cache)
– Most processors have MP support out of the box
– Most of these systems are bus-based
– Popular in commercial as well as HPC markets

• Medium scale (64–256): shared memory and clusters
– Clusters are cheaper
– Often, clusters of SMPs

• Large scale (> 256): few shared memory and many clusters
– SGI Altix 3300: 512-processor shared memory (NUMA)
– Large variety on custom/off-the-shelf components such as

interconnection networks.
• Beowulf clusters: fast Ethernet
• Myrinet: fiber optics
• IBM SP2: custom

4

CSC/ECE 506: Architecture of Parallel Computers

Shared Memory vs. No Shared Memory

• Advantages of shared-memory machines (vs. distributed
memory w/same total memory size)

– Support shared-memory programming

• Clusters can also support it via software shared
virtual memory, but with much coarser granularity
and higher overheads

– Allow fine-grained sharing

• You can’t do this with messages—there’s too
much overhead to share small items

– Single OS image

• Disadvantage of shared-memory machines

– Cost of providing shared-memory abstraction

5

CSC/ECE 506: Architecture of Parallel Computers

A Bus-Based Multiprocessor

P-Pr o bus (64-bit data, 36-bit addr ess, 66 MHz)

CPU

Bus interface

MIU

P-Pr o
module

P-Pr o
module

P-Pr o
module256-KB

L2 $
Interrupt
contr oller

PCI
bridge

PCI
bridge

Memory
contr oller

1-, 2-, or 4-way
interleaved

DRAM

P
C

I b
us

P
C

I b
usPCI

I/O
car ds

6

1

2

3

4

5

6

4/1/2024

2

CSC/ECE 506: Architecture of Parallel Computers

Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Will This Parallel Code Work Correctly?

sum = 0;
begin parallel
for (i=1; i<=2; i++) {

lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
print sum;

Suppose a[1] = 3 and
a[2] = 7

Two issues:

• Will it print sum = 10?
• How can it support locking correctly?

8

CSC/ECE 506: Architecture of Parallel Computers

The Cache-Coherence Problem

sum = 0;
begin parallel
for (i=1; i<=2; i++) {

lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
print sum;

Suppose a[1] = 3 and
a[2] = 7

P1

CacheCache

P2

CacheCache

Pn

CacheCache

. . .

• Will it print sum = 10?

9

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

Start state. All caches
empty and main memory
has Sum = 0.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

Controller
TraceTrace

P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

BusBus

10

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 reads Sum from memory. P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

Controller
TraceTrace

P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

BusBus

Sum=0 V

11

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P2 reads. Let’s assume this
comes from memory too.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

Controller

BusBus

Sum=0 V Sum=0 V

TraceTrace
P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

12

7

8

9

10

11

12

4/1/2024

3

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 writes. This write goes
to the cache.

P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

Controller

BusBus

Sum=3 D Sum=0 V

TraceTrace
P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

13

Sum=0 V

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P2 writes. P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

Controller

BusBus

Sum=3 D Sum=7 D

TraceTrace
P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

14

Sum=0 V

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 reads. P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 0

Controller

BusBus

Sum=3 D Sum=7 D

TraceTrace
P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

15

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem

• Do P1 and P2 see the same sum?

• Does it matter if we use a WT cache?

• What if we do not have caches, or sum is uncacheable.
Will it work?

• The code given at the start of the animation does not
exhibit the same coherence problem shown in the
animation. Explain why.

CSC/ECE 506: Architecture of Parallel Computers

Write-Through Cache Does Not Work

P1 reads. P1

CacheCache

P2

CacheCache

P3

CacheCache

Main memoryMain memory

Sum = 7

Controller
TraceTrace

P1P1 Read SumRead Sum

P2P2 Read SumRead Sum

P1P1 Write Sum = 3Write Sum = 3

P2P2 Write Sum = 7Write Sum = 7

P1P1 Read SumRead Sum

BusBus

Sum=3 D Sum=7 D

17

CSC/ECE 506: Architecture of Parallel Computers

Software Lock Using a Flag

• Here’s simple code to implement a lock:

• Will this guarantee mutual exclusion?

• Let’s look at an algorithm that will …

void lock (int process, int lvar) { // process is 0 or 1
while (lvar == 1) {} ;
lvar = 1;

}

void unlock (int process, int lvar) {
lvar = 0;

}

18

13

14

15

16

17

18

4/1/2024

4

CSC/ECE 506: Architecture of Parallel Computers

Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Peterson’s Algorithm

20

• Acquisition of lock() occurs only if
1.interested[other] == FALSE: either the other process

has not competed for the lock, or it has just called unlock(),
or

2.turn != other: the other process is competing, has set the
turn to our process, and will be blocked in the while() loop

int turn;
int interested[n]; // initialized to false

void lock (int process, int lvar) { // process is 0 or 1
int other = 1 – process;
interested[process] = TRUE;
turn = other;
while (turn == other && interested[other] == TRUE) {} ;

}
// Post: turn != other or interested[other] == FALSE

void unlock (int process, int lvar) {
interested[process] = FALSE;

}

CSC/ECE 506: Architecture of Parallel Computers

No Race

21

// Proc 0
interested[0] = TRUE;
turn = 1;
while (turn==1 && interested[1]==TRUE)

{};
// since interested[1] starts out FALSE,
// Proc 0 enters critical section

// Proc 1
interested[1] = TRUE;
turn = 0;
while (turn==0 && interested[0]==TRUE)
{};

// since turn==0 && interested[0]==TRUE
// Proc 1 waits in the loop until Proc 0
// releases the lock// unlock

interested[0] = FALSE;

// now Proc 1 can exit the loop and
// acquire the lock

CSC/ECE 506: Architecture of Parallel Computers

Race

22

while (turn==1 && interested[1]==TRUE)
{};

// since turn == 0,
// Proc 0 enters critical section

while (turn==0 && interested[0]==TRUE)
{};

// since turn==0 && interested[0]==TRUE
// Proc 1 waits in the loop until Proc 0
// releases the lock

// unlock
interested[0] = FALSE;

// now Proc 1 can exit the loop and
// acquire the lock

// Proc 0
interested[0] = TRUE;
turn = 1;

// Proc 1
interested[1] = TRUE;

turn = 0;

CSC/ECE 506: Architecture of Parallel Computers

When Does Peterson’s Alg. Work?

23

• Correctness depends on the global order of

• Thus, it will not work if—
– The compiler reorders the operations

• There’s no data dependence, so unless the compiler is
notified, it may well reorder the operations

• This prevents compiler from using aggressive optimizations
used in serial programs

– The architecture reorders the operations
• Write buffers, memory controller
• Network delay for statement A
• If turn and interested[] are cacheable, A may result in

cache miss, but B in cache hit
• This is called the memory-consistency problem.

A: interested[process] = TRUE;
B: turn = other;

CSC/ECE 506: Architecture of Parallel Computers

Race on a Non-Sequentially Consistent Machine

24

// Proc 0
interested[0] = TRUE;

turn = 1;
while (turn==1 && interested[1]==TRUE)
{};

// Proc 1

interested[1] = TRUE;
turn = 0;

while (turn==0 && interested[0]==TRUE)
{};

19

20

21

22

23

24

4/1/2024

5

CSC/ECE 506: Architecture of Parallel Computers

Race on a Non-Sequentially Consistent Machine

25

// Proc 0
interested[0] = TRUE;

turn = 1;
while (turn==1 && interested[1]==TRUE)

{};
// since interested[1] == FALSE,
// Proc 0 enters critical section

// Proc 1

turn = 0;

interested[1] = TRUE;
while (turn==0 && interested[0]==TRUE)
{};

// since turn==1,
// Proc 1 enters critical section

reordered

Can you explain what has gone wrong here?

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

26

Memory consistencyCache coherence

Deals with the ordering of
operations to different memory
locations.

Deals with the ordering of
operations to a single memory
location.

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

27

Memory consistencyCache coherence

Deals with the ordering of
operations to different memory
locations.

Deals with the ordering of
operations to a single memory
location.

Tackled by consistency models
• supported by hardware, but
• software must conform to the

model.

Tackled by hardware
• using coherence protocols.
• Hw. alone guarantees correctness

but with varying performance

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

28

Memory consistencyCache coherence

Deals with the ordering of
operations to different memory
locations.

Deals with the ordering of
operations to a single memory
location.

Tackled by consistency models
• supported by hardware, but
• software must conform to the

model.

Tackled by hardware
• using coherence protocols.
• Hw. alone guarantees correctness

but with varying performance

Models provide diff. abstractions
• Compilers must be aware of the

model (no reordering certain
operations …).

• Programs must “be careful” in
using shared variables.

All protocols realize same abstraction
• A program written for 1 protocol

can run w/o change on any other.

CSC/ECE 506: Architecture of Parallel Computers

Two Approaches to Consistency

• Sequential consistency
– Multi-threaded codes for uniprocessors automatically run

correctly

– How? Every shared R/W completes globally in program
order

– Most intuitive but worst performance

• Relaxed consistency models
– Multi-threaded codes for uniprocessor need to be ported to

run correctly

– Additional instruction (memory fence) to ensure global
order between 2 operations

29

CSC/ECE 506: Architecture of Parallel Computers

Cache Coherence

• Do we need caches?
– Yes, to reduce average data access time.

– Yes, to reduce bandwidth needed for bus/interconnect.

• Sufficient conditions for coherence:
– Notation: Requestproc(data)

– Write propagation:

• Rdi (X) must return the “latest” Wrj (X)

– Write serialization:

• Wri (X) and Wrj (X) are seen in the same order by everybody

– e.g., if I see w2 after w1, you shouldn’t see w2 before w1

– There must be a global ordering of memory
operations to a single location

– Is there a need for read serialization?

30

25

26

27

28

29

30

4/1/2024

6

CSC/ECE 506: Architecture of Parallel Computers

A Coherent Memory System: Intuition

• Uniprocessors
– Coherence between I/O devices and processors
– Infrequent, so software solutions work

• uncacheable memory, uncacheable operations, flush
pages, pass I/O data through caches

• But coherence problem much more critical in multiprocessors
– Pervasive
– Performance-critical
– Necessitates a hardware solution

• * Note that “latest write” is ambiguous.
– Ultimately, what we care about is that any write is propagated

everywhere in the same order.

– Synchronization defines what “latest” means.

31

CSC/ECE 506: Architecture of Parallel Computers

Summary

• Shared memory with caches raises the problem of cache
coherence.

– Writes to the same location must be seen in the same
order everywhere.

• But this is not the only problem

– Writes to different locations must also be kept in order
if they are being depended upon for synchronizing
tasks.

– This is called the memory-consistency problem

32

31

32

4/1/2024

1

CSC/ECE 506: Architecture of Parallel Computers

Coherence and ConsistencyCoherence and Consistency

1

Lecture 14

(Chapter 7)

Lecture 14

(Chapter 7)

CSC/ECE 506: Architecture of Parallel Computers

Outline

 Bus-based coherence

 Invalidation vs. update coherence
protocols

 Memory consistency

 Sequential consistency

CSC/ECE 506: Architecture of Parallel Computers

Several Configurations for a Memory System

3

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shared memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory

CSC/ECE 506: Architecture of Parallel Computers

Assume a Bus-Based SMP

• Built on top of two fundamentals of uniprocessor system

– Bus transactions

– Cache-line finite-state machine

• Uniprocessor bus transaction:

– Three phases: arbitration, command/address, data transfer

– All devices observe addresses, one is responsible

• Uniprocessor cache states:

– Every cache line has a finite-state machine

– In WT+write no-allocate: Valid, Invalid states

– WB: Valid, Invalid, Modified (“Dirty”)

• Multiprocessors extend both these somewhat to implement
coherence

4

CSC/ECE 506: Architecture of Parallel Computers

Snoop-Based Coherence on a Bus

• Basic Idea

– Assign a snooper to each processor so that all bus transactions
are visible to all processors (“snooping”).

– Processors (via cache controllers) change line states on relevant
events.

5

CSC/ECE 506: Architecture of Parallel Computers

Snoop-Based Coherence on a Bus

• Basic Idea

– Assign a snooper to each processor so that all bus transactions
are visible to all processors (“snooping”).

– Processors (via cache controllers) change line states on relevant
events.

• Implementing a Protocol

– Each cache controller reacts to processor and bus events:
• Takes actions when necessary

– Updates state, responds with data, generates new bus
transactions

– The memory controller also snoops bus transactions and
returns data only when needed

– Granularity of coherence is typically one cache line/block

• Same granularity as in transfer to/from cache

6

1

2

3

4

5

6

4/1/2024

2

CSC/ECE 506: Architecture of Parallel Computers

Coherence with Write-Through Caches

7

sum = 0;
begin parallel
for (i=0; i<2; i++) {

lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
Print sum;

Suppose a[0] = 3 and a[1] = 7

P1

CacheCache

P2

CacheCache

Pn

CacheCache

. . .

= Snooper

– What happens when we snoop a write?
• Write-update protocol: write is immediately propagated or
• Write-invalidation protocol: causes miss on later access, and memory up-

to-date via write-through

CSC/ECE 506: Architecture of Parallel Computers

Snooper Assumptions

• Atomic bus

• Writes occur in
program order

8

CSC/ECE 506: Architecture of Parallel Computers

Transactions

• To show what’s going on, we will use
diagrams involving—
– Processor transactions

• PrRd

• PrWr

– Snooped bus transactions
• BusRd

• BusWr

9

CSC/ECE 506: Architecture of Parallel Computers

Write-Through State-Transition Diagram

10

V

I

PrRd/BusRd

PrRd/-- PrWr/BusWr

PrWr/BusWr

BusWr/--

Processor-initiated transactions

Bus-snooper-initiated transactions

• Key: A write invalidates all other caches

• Therefore, we have:

– Modified line: exists as V in only 1 cache

– Clean line: exists as V in at least 1 cache

– Invalid state represents invalidated line or not present in the cache

write-through
no-write-allocate
write invalidate

How does this protocol
guarantee write
propagation?

How does it guarantee
write serialization?

CSC/ECE 506: Architecture of Parallel Computers

Is It Coherent?
• Write propagation:

– through invalidation

– then a cache miss, loading a new value

• Write serialization: Assume—

– atomic bus

– invalidation happens instantaneously

– writes serialized by order in which they appear on bus (bus order)
• So are invalidations

• Do reads see the latest writes?

– Read misses generate bus transactions, so will get the last write

– Read hits: do not appear on bus, but are preceded by

• most recent write by this processor (self), or

• most recent read miss by this processor

– Thus, reads hits see latest written values (according to bus order)
11

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

12

A memory operation M2 follows a memory operation M1 if the operations are issued
by the same processor and M2 follows M1 in program order.
1. Read follows write W if read generates bus transaction that follows W’s xaction.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

11

11

7

8

9

10

11

12

4/1/2024

3

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

13

A memory operation M2 follows a memory operation M1 if the operations are issued
by the same processor and M2 follows M1 in program order.
1. Read follows write W if read generates bus transaction that follows W’s xaction.
2. Write follows read or write M if M generates bus transaction and the transaction

for the write follows that for M.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

22

22
R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

14

A memory operation M2 follows a memory operation M1 if the operations are issued
by the same processor and M2 follows M1 in program order.
1. Read follows write W if read generates bus transaction that follows W’s xaction.
2. Write follows read or write M if M generates bus transaction and the transaction

for the write follows that for M.
3. Write follows read if read does not generate a bus transaction and is not already

separated from the write by another bus transaction.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

33

33
R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

CSC/ECE 506: Architecture of Parallel Computers

Problem with Write-Through
• Write-through can guarantee coherence, but it requires a lot of bandwidth.

– Every write goes to the shared bus and memory
– Example:

200MHz, 1-CPI processor, and 15% instrs. are 8-byte stores
Each processor generates 30M stores, or 240MB data, per second
How many processors could a 1GB/s bus support without saturating?

– Thus, unpopular for SMPs

• Write-back caches
– Write hits do not go to the bus reduce most write bus transactions
– But now how do we ensure write propagation and serialization?

15

CSC/ECE 506: Architecture of Parallel Computers

Lecture 14 Outline

16

 Bus-based coherence
 Invalidation vs. update coherence protocols
 Memory consistency
 Sequential consistency

CSC/ECE 506: Architecture of Parallel Computers

Dealing with “Dirty” Lines

• What does it mean to say a cache line is “dirty”?
– That at least one of its words has been changed since it was

brought in from main memory.

• Dirty in a uniprocessor vs. a multiprocessor
– Uniprocessor:

• Only need to keep track of
whether a line has been modified.

• Multiprocessor:
• Keep track of whether line is modified.

• Keep track of which cache owns the line.

• Thus, a cache line must know whether it is—

• Exclusive: “I’m the only one that has it, other than possibly
main memory.”

• The Owner: “I’m responsible for supplying the block upon a
request for it.” 17

CSC/ECE 506: Architecture of Parallel Computers

Invalidation vs. Update Protocols

• Question: What happens to a line if another
processor changes one of its words?

– It can be invalidated.

– It can be updated.

13

14

15

16

17

18

4/1/2024

4

CSC/ECE 506: Architecture of Parallel Computers

Invalidation-Based Protocols

• Idea: When I write the block, invalidate everybody else
 I get exclusive state.

• “Exclusive” means …
• Can modify without notifying anyone else (i.e., without a bus

transaction)

• But, before writing to it,
• Must first get block in exclusive state

• Even if block is already in state V, a bus transaction
(Read Exclusive = RdX) is needed to invalidate others.

• What happens when a block is ejected from the cache?
– if the block is not dirty?

– if the block is dirty?

19

CSC/ECE 506: Architecture of Parallel Computers

-Based Protocols

• Idea: If this block is written, send the new word to all
other caches.
• New bus transaction: Update

• Compared to invalidate, what are advs. and disads.?

• Advantages
• Other processors don’t miss on next access

• Saves refetch: In invalidation protocols, they would miss & bus
transaction.

• Saves bandwidth: A single bus transaction updates several
caches

• Disadvantages
• Multiple writes by same processor cause multiple update

transactions
• In invalidation, first write gets exclusive ownership, other writes local

20

CSC/ECE 506: Architecture of Parallel Computers

Invalidate versus Update

• Is a block written by one processor read by other
processors before it is rewritten?

• Invalidation:
• Yes Readers will take a miss.

• No Multiple writes can occur without additional traffic.

• Copies that won’t be used again get cleared out.

• Update:
• Yes Readers will not miss if they had a copy previously

• A single bus transaction will update all copies

• No Multiple useless updates, even to dead copies

• Invalidation protocols are much more popular.
• Some systems provide both, or even hybrid

21

CSC/ECE 506: Architecture of Parallel Computers

Lecture 14 Outline

 Bus-based coherence
 Invalidation vs. update coherence

protocols
 Memory consistency
 Sequential consistency

22

CSC/ECE 506: Architecture of Parallel Computers

Let’s Switch Gears to Memory Consistency

23

• Sequential consistency (SC) corresponds to our intuition.

• Other memory consistency models do not obey our intuition!

• Coherence doesn’t help; it pertains only to a single location

P1 P2

/*Assume initial values of A and flag are 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

• Recall Peterson’s algorithm (turn= …; interested[process]=…)

• When “multiple” means “all”, we have sequential consistency (SC)

Consistency: Writes to multiple locations are visible to all in the same order

Coherence: Writes to a single location are visible to all in the same order

CSC/ECE 506: Architecture of Parallel Computers

Another Example of Ordering

24

• What do you think should be printed? You may think:

• 1a, 1b, 2a, 2b
• 1a, 2a, 2b, 1b
• 2a, 2b, 1a, 1b

P1 P2

/*Assume initial values of A and B are 0 */

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

programmers’ intuition:
sequential consistency

{A=1, B=2}
{A=1, B=0}
{A=0, B=0}

• Whatever our intuition is, we need

• an ordering model for clear semantics across different locations
• as well as cache coherence!

so programmers can reason about what results are possible.

• Is {A=0, B=2} possible? • Yes, suppose P2 sees: 1b, 2a, 2b, 1a
e.g. evil compiler, evil interconnection.

19

20

21

22

23

24

4/1/2024

5

CSC/ECE 506: Architecture of Parallel Computers

A Memory-Consistency Model …

• Is a contract between programmer and system
• Necessary to reason about correctness of

shared-memory programs

• Specifies constraints on the order in which
memory operations (from any process) can
appear to execute with respect to one another
• Given a load, constrains the possible values returned by it

• Implications for programmers
• Restricts algorithms that can be used
• e.g., Peterson’s algorithm, home-brew synchronization will be

incorrect in machines that do not guarantee SC

• Implications for compiler writers and computer architects
• Determines how much accesses can be reordered.

25

CSC/ECE 506: Architecture of Parallel Computers

Lecture 14 Outline

26

 Bus-based coherence
 Memory consistency
 Sequential consistency

 Invalidation vs. update coherence protocols

CSC/ECE 506: Architecture of Parallel Computers

Sequential Consistency

27

“A multiprocessor is sequentially consistent if the result of any execution is
the same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program.” [Lamport, 1979]

• (as if there were no caches, and a single memory)

• Total order achieved by interleaving accesses from different processes

• Maintains program order, and memory operations, from all processes,
appear to [issue, execute, complete] atomically w.r.t. others

Processors
issuing memory
references as
per program order

P1 P2 Pn

Memory

The “switch” is randomly
set after each memory
reference

CSC/ECE 506: Architecture of Parallel Computers

What Really Is Program Order?

• Intuitively, the order in
which operations appear
in source code

• Thus, we assume order
as seen by programmer,
• the compiler is prohibited from reordering memory

accesses to shared variables.

• Note that this is one reason parallel programs
are less efficient than serial programs.

28

CSC/ECE 506: Architecture of Parallel Computers

What Reordering Is Safe in SC?

29

• Possible outcomes for (A,B): (0,0), (1,0), (1,2); impossible under SC: (0,2)

• Proof: By program order we know 1a 1b and 2a 2b
A = 0 implies 2b 1a, which implies 2a 1b

B = 2 implies 1b 2a, which leads to a contradiction

• BUT, actual execution 1b 1a 2b 2a is SC, despite not being in program order

– It produces the same result as 1a 1b 2a 2b.

– Actual execution 1b 2a 2b 1a is not SC, as shown above

– Thus, some reordering is possible, but difficult to reason that it ensures SC

What matters is the order in which code appears to execute,
not the order in which it actually executes.

P1 P2

/*Assume initial values of A and B are 0 */

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

CSC/ECE 506: Architecture of Parallel Computers

Conditions for SC
• Two kinds of requirements

– Program order
• Memory operations issued by a process must appear to become

visible (to others and itself) in program order.
– Global order

• Atomicity: One memory operation should appear to complete
with respect to all processes before the next one is issued.

• Global order: The same order of operations is seen by all
processes.

• Tricky part: how to make writes atomic?
– Necessary to detect write completion
– Read completion is easy: a read completes when the data returns

• Who should enforce SC?
– Compiler should not change program order
– Hardware should ensure program order and atomicity

30

25

26

27

28

29

30

4/1/2024

6

CSC/ECE 506: Architecture of Parallel Computers

Write Atomicity

31

• Write Atomicity ensures same write ordering is seen by all procs.

– In effect, extends write serialization to writes from multiple
processes

• Under SC, transitivity implies that A should print as 1.
Without SC, why might it not?

P1 P2 P3

A=1; while (A==0);

B=1; while (B==0);

print A;

CSC/ECE 506: Architecture of Parallel Computers

Is the Write-Through Example SC?

o Assume no write buffers, or load-store bypassing

o Yes, it is SC, because of the atomic bus:
• Any write and read misses (to all locations) are serialized

by the bus into bus order.

• If a read obtains value of write W, W is guaranteed to have
completed since it caused a bus transaction

• When write W is performed with respect to any processor,
all previous writes in bus order have completed

32

CSC/ECE 506: Architecture of Parallel Computers

Summary

• One solution for small-scale multiprocessors is a shared
bus.

• State-transition diagrams can be used to show how a
cache-coherence protocol operates.
– The simplest protocol is write-through, but it has performance problems.

• Sequential consistency guarantees that memory
operations are seen in order throughout the system.
– It is fairly easy to show whether a result is or is not sequentially

consistent.

• The two main types of coherence protocols are
invalidate and update.
– Invalidate usually works better, because it frees up cache lines

more quickly.

31

32

33

Lecture 16 Architecture of Parallel Computers 1

Performance of coherence protocols

Cache misses have traditionally been classified into four categories:

• Cold misses (or “compulsory misses”) occur the first time that a
block is referenced.

• Conflict misses are misses that would not occur if the cache
were fully associative with LRU replacement.

• Capacity misses occur when the cache size is not sufficient to
hold data between references.

• Coherence misses are misses caused by the coherence
protocol.

The first three types occur in uniprocessors. The last is specific to
multiprocessors.

To these, Solihin adds context-switch (or “system-related”) misses,
which are related to task switches.

Let’s look at a uniprocessor example, a very small cache that has
only four lines.

Let’s look first at a fully associative cache, because which kind(s) of
misses can’t it have?

Here’s an example of a reference trace of 0, 2, 4, 0, 2, 4, 6, 8, 0.

Fully associative

 0 2 4 0 2 4 6 8 0

0 0 0 8

1 2 2 0

2 4 4

3 6

 cold cold cold hit hit hit cold cold capacity

In a fully associative cache, there are 5 cold misses, because 5
different blocks are referenced.

There are 3 hits.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

The remaining reference (the third one to block 0) is not a cold miss.

It must be a capacity miss, because the cache doesn’t have room to
hold all five blocks.

We’ll assume that replacement is LRU; in this case, block 0 replaces
the LRU line, which at that point is line 1.

Now let’s suppose the cache is 2-way set associative. This means
there are two sets, one (set 0) that will hold the even-numbered
blocks, and one (set 1) that will hold the odd-numbered blocks.

2‐way set‐associative

 0 2 4 0 2 4 6 8 0

0 0 4 2 6 0

1 2 0 4 8

2

3

 Cold Cold Cold Conflict Conflict Conflict Cold Cold Capacity

Since only even-numbered blocks are referenced in this trace, they
will all map to set 0.

This time, though, there won’t be any hits.

Classify each of these references as a hit or a particular kind of miss.

References that would have been hits in a fully associative cache, but
are misses in a less-associative cache, are conflict misses.

Finally, let’s look at a direct-mapped cache. Blocks with numbers
congruent to 0 mod 4 map to line 0; blocks with numbers congruent
to 1 mod 4 map to line 1, etc.

Direct mapped

 0 2 4 0 2 4 6 8 0

0 0 4 0 4 8 0

1

2 2 2 6

3

 Cold Cold Cold Conflict Hit Conflict Cold Cold Capacity

Lecture 16 Architecture of Parallel Computers 3

Classify each of these references as a hit or a particular kind of miss.

Of the three conflict misses in the set-associative cache, one is a hit
here. Block 2 is still in the cache the second time it is referenced.
The other two are conflict misses in this cache.

Now, let’s talk about coherence misses.

Coherence misses can be divided into those caused by true sharing
and those caused by false sharing (see p. 236 of the Solihin text).

 False-sharing misses are those caused by having a line size
larger than one word. Can you explain?

 True-sharing misses, on the other hand, occur when

o a processor writes into a cache line, invalidating a copy of
the same block in another processors’ cache,

o after which

How can we attack each of the four kinds of misses?

 To reduce capacity misses, we can ^ cache size

 To reduce conflict misses, we can ^ associativity

 To reduce cold misses, we can ^ line size

 To reduce coherence misses, we can change the line size.

Similarly, context-switch misses can be divided into categories.

 Replaced misses are blocks that were replaced while the other
process(es) were active.

 Reordered misses are blocks that were shoved so far down the
LRU stack by the other process(es) that they are replaced soon
afterwards (when they otherwise would’ve stayed in the cache).

Which protocol is best? What cache line size is performs best?
What kind of misses predominate?

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

Simulations

Questions like these can be answered by simulation. Getting the
answer right is part art and part science.

Parameters need to be chosen for the simulator. Culler & Singh
(1998) selected a single-level 4-way set-associative 1 MB cache with
64-byte lines.

The simulation assumes an idealized memory model, which assumes
that references take constant time. Why is this not realistic?

The simulated workload consists of

 six parallel programs (Barnes, LU, Ocean, Radix, Radiosity,
Raytrace) from the SPLASH-2 suite and

 one multiprogrammed workload, consisting of mainly serial
programs.

Invalidate vs. update

with respect to miss rate

Which is better, an update or an invalidation protocol?

Let’s look at real programs.

Lecture 16 Architecture of Parallel Computers 5

M
is

s
ra

te
 (

%
)

M
is

s
ra

te
 (

%
)

L
U

/in
v

L
U

/u
p

d

O
ce

a
n

/in
v

O
ce

a
n

/m
ix

O
ce

a
n

/u
p

d

R
a

yt
ra

ce
/in

v

R
ay

tr
ac

e/
up

d

0.00

0.10

0.20

0.30

0.40

0.50

0.60

Cold

Capacity

True sharing

False sharing

R
ad

ix
/in

v

R
ad

ix
/m

ix

R
a

d
ix

/u
p

d

0.00

0.50

1.00

1.50

2.00

2.50

Where there are many coherence misses, update performs better.

If there were many capacity misses, update would hurt, because it
would needlessly keep data in cache, which would need to be
updated, increasing bus traffic.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

with respect to bus traffic

Compare the

● upgrades in inv. protocol

with the

● updates in upd. protocol

Each of these operations
produces bus traffic.

Which are more frequent?

Updates in an update
protocol are more
prevalent than upgrades
in an invalidation protocol.

Which protocol causes
more bus traffic?

The update protocol
causes more traffic.

The main problem is that
one processor tends to
write a block multiple
times before another
processor reads it.

LU/inv

LU/upd

Ocean/inv

Upgrade/update rate (%)

Upgrade/update rate (%)

Ocean/mix

Ocean/upd

Raytrace/inv

Raytrace/upd

0.00

0.50

1.00

1.50

2.00

2.50

Radix/inv

Radix/mix

Radix/upd

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

This causes several bus transactions instead of one, as there would
be in an invalidation protocol.

Effect of cache line size

on miss rate

If we increase the line size, what happens to each of the following
classes of misses?

 capacity misses? Hard to say

 conflict misses? Hard to say

Lecture 16 Architecture of Parallel Computers 7

 true-sharing misses? Down

 false-sharing misses? Increase

If we increase the line size, what happens to bus traffic? It increases,
because for each miss, more data needs to be brought in.

So it is not clear which line size will work best.

Cold

Capacity

True sharing

False sharing

Upgrade

8

0

0.1

0.2

0.3

0.4

0.5

0.6

M
is

s
ra

te
 (

%
)

B
a

rn
e

s/
8

B
a

rn
e

s/
1

6

B
a

rn
e

s/
3

2

B
a

rn
e

s/
6

4

B
a

rn
e

s/
1

2
8

B
a

rn
e

s/
2

5
6

L
u

/8

L
u

/1
6

L
u

/3
2

L
u

/6
4

L
u

/1
2

8

L
u

/2
5

6

R
a

d
io

si
ty

/8

R
a

d
io

si
ty

/1
6

R
a

d
io

si
ty

/3
2

R
a

d
io

si
ty

/6
4

R
a

d
io

si
ty

/1
2

8

R
a

d
io

si
ty

/2
5

6

Results for the first three applications seem to show that which line
size is best? 256

For the second set of applications, which do not fit in cache, Radix
shows a greatly increasing number of false-sharing misses with

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

increasing block size.

Cold

Capacity

True sharing

False sharing

Upgrade

8 6 2 4 8 6 80

2

4

6

8

10

12

M
is

s
ra

te
 (

%
)

O
ce

a
n

/8

O
ce

a
n

/1
6

O
ce

a
n

/3
2

O
ce

a
n

/6
4

O
ce

an
/1

2
8

O
ce

an
/2

5
6

R
ad

ix
/8

R
a

di
x/

1
6

R
a

di
x/

3
2

R
a

di
x/

6
4

R
a

d
ix

/1
2

8

R
a

d
ix

/2
5

6

R
a

yt
ra

ce
/8

R
a

yt
ra

ce
/1

6

R
a

yt
ra

ce
/3

2

R
a

yt
ra

ce
/6

4

R
a

yt
ra

ce
/1

2
8

R
a

yt
ra

ce
/2

5
6

on bus traffic

Larger line sizes generate more bus traffic.

2 4 280

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Data bus

Address bus

B
a

rn
e

s/
1

6

T
ra

ff
ic

 (
b

yt
e

s/
in

st
ru

ct
io

n
s)

B
a

rn
e

s/
8

B
a

rn
e

s/
3

2

B
a

rn
e

s/
6

4

B
a

rn
e

s/
1

2
8

B
a

rn
e

s/
2

5
6

R
a

d
io

si
ty

/8

R
ad

io
si

ty
/1

6

R
ad

io
si

ty
/3

2

R
ad

io
si

ty
/6

4

R
ad

io
si

ty
/1

2
8

R
ad

io
si

ty
/2

5
6

R
a

yt
ra

ce
/8

R
a

yt
ra

ce
/1

6

R
ay

tr
a

ce
/3

2

R
ay

tr
a

ce
/6

4

R
ay

tr
a

ce
/1

2
8

R
ay

tr
a

ce
/2

5
6

Lecture 16 Architecture of Parallel Computers 9

The results are different than for miss rate—traffic almost always
increases with increasing line size.

But address-bus traffic moves in the opposite direction from data-bus
traffic.

With this in mind, which line size appears to be best? 32 or 64

Context-switch misses

As cache size gets larger, there are fewer uniprocessor (“natural”)
cache misses.

But the number of context-switch misses may go up (mcf, soplex) or
down (namd, perlbench).

 Why could it go up?

 Why could it go down?

Reordered misses also decline as the cache becomes large. Why?
Because there are enough lines in the cache that blocks farther down
the LRU stack won’t be replaced.

Tr
af

fic
 (

by
te

s/
in

st
ru

ct
io

n)

Tr
af

fic
 (

by
te

s/
F

LO
P

)

Data bus

Address bus
Data bus

Address bus

R
ad

ix
/8

R
ad

ix
/1

6

R
ad

ix
/3

2

R
ad

ix
/6

4

R
ad

ix
/1

28

R
ad

ix
/2

56

0

1

2

3

4

5

6

7

8

9

10

LU
/8

LU
/1

6

LU
/3

2

LU
/6

4

LU
/1

28

LU
/2

56

O
ce

an
/8

O
ce

an
/1

6

O
ce

an
/3

2

O
ce

an
/6

4

O
ce

an
/1

28

O
ce

an
/2

56

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 10

Physical cache organization

[Solihin §5.6] A cache is centralized (“united”) if its banks are
adjacent on the chip.

What are some advantages of a centralized structure?

 Uniform access time

 Interconnect between the
cache and the next level
(e.g., on-chip memory
controller)) is simplified,
because it can be in one
place.

A centralized cache usually uses
a crossbar (see also p. 167 of the
text).

P
ro

ce
ss

o
rs

Memories

Crossbar
Switch

…

…

A cache is distributed if its banks are scattered around the chip.

Lecture 16 Architecture of Parallel Computers 11

Usually, a portion of the L2 is placed near each L1; this is a tiled
arrangement.

What are some advantages of a distributed structure?

 In replication: A single tile (core, L1 caches, 1 bank of L2) can
be designed, & stamped as many times as needed. So it is
more scalable, easier to verify, use in next generation (same
advs. as multicore!)

 In layout: More feasible for a manycore processor, where wire
length and thermal considerations prevent a cache from being
centralized.

Hybrid centralized + distributed structure: There’s a tradeoff between
centralized and distributed.

 A large cache is uniformly slow, especially if it needs to handle
coherence.

 A distributed cache requires a lot of interconnections, and
routing latency is high if the cache is in too many places.

A compromise is to have
an L2 cache that is
distributed, but not as
distributed as the L1
caches.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 12

Logical cache organization

[Solihin §5.7] Regardless of whether a cache is centralized or
distributed, there are several options in mapping addresses to tiles.

 A processor can be limited to accessing a single tile, the one
closest to it (private cache configuration).

o A block in the local cache may also exist in other caches;
the copies must be kept coherent by a coherence
protocol.

 All of the tiles can form a large logical cache. The address of a
block completely determines what tile it is found in (shared
1-tile associative).

o It may require a lot of hops to get from a processor to the
cache.

 A block can be mapped to two tiles (shared 2-tile associative).

o Block numbers are arranged to improve distance locality.

 Or, a block can be allowed to map to any tile (full tile
associativity).

o What is the upside?

o What is the downside?

Lecture 16 Architecture of Parallel Computers 13

Another option is a partitioned shared cache organization.

 Can you tell how many tiles each block can map to? Yes, four.

 Can you tell how many lines each block can map to? No,
because we don’t know how the address is divided into tag,
index, and offset fields.

 How does coherence play a role? Blocks shared between
processors can be allowed to be cached in different groups if
there is a coherence protocol.

Lecture 19 Architecture of Parallel Computers 1

Cache Coherence vs. Memory Consistency

 Cache coherence

o deals with ordering of writes to a single memory location
o only needed for systems with caches

 Memory consistency

o deals with ordering of reads/writes to all memory locations
o needed in systems with or without caches

Why is a memory consistency model needed?

[§9.1] Programmer’s intuition:

P0:

S1: datum = 5;
S2: datumIsReady = 1;

P1:

S3: while (!datumIsReady);
S4: … = datum

Programmers expect S4 to read the new value of datum (i.e., 5).

This expectation is violated if—

 S2 appears to be executed before S1
 S4 appears to be executed before S3

Thus, Hypothesis 1: Program-order expectation

Programmers expect memory accesses in a thread to be executed in
the same order in which they occur in the source code.

Not only the executing thread, but all threads, are expected to see
them in this order.

P0:

S1: x = 5;
S2: xReady = 1;

P1:

S3: while
 (!xReady) {};
S4: y = x + 4;
S5: xyReady = 1;

P2:

S6: while
 (!xyReady) {};
S7: z = x * y;

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

Let’s say, initially, x = y = z = xReady = xyReady = 0

As a programmer, what would you expect to be the value of z at S7?
45

This implies that if the new value of x has been propagated to P2, it
has also been propagated to P1.

Thus, Hypothesis 2: Atomicity expectation

A read or write happens instantaneously with respect to all processors.

How can the atomicity expectation be violated?

Step 1: New values of x and xReady have been propagated to
P1, but have not reached P2.

Step 2: New values of y and xyReady have been propagated to
P2 before x is propagated to P2.

Step 3: When x is propagated to P2, P2 has already read the old
value of x, and z has been set to 0.

Is there any other way that a violation of store atomicity can lead to
a wrong value for z?

What is another “incorrect” value that could be written for z?
Explain how this could happen.

Summary of programmer’s expectations:

Lecture 19 Architecture of Parallel Computers 3

Memory accesses emanating from a processor should be performed
in program order, and each of them should be performed atomically.

These expectations were incorporated in Lamport’s 1979 definition of
sequential consistency:

A multiprocessor is sequentially consistent if the result of any
execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of
each individual processor occur in this sequence in the order
specified by its program.

Sequentially consistent vs. non-SC outcomes

Consider these code sequences, with a and b initialized to 0.

P0:

S1: a = 1;
S2: b = 1;

P1:

S3: print b;
S4: print a;

Note that this program is non-deterministic due to a lack of
synchronization.

Under SC, S1 S2 and S3 S4 are guaranteed

Assuming SC, what values might possibly be printed for a and b?

S1, S2, S3, S4 cause a, b = 1, 1

S3, S4, S1, S2 cause a, b = 0, 0

S1, S3, S2, S4 cause a, b = 1, 0

What values for a, b are impossible? a = 0, b = 1

Prove it.

For a to print as 0, it must be that S4 S1: e.g., S3, S4, S1, S2
 S4 precedes S1

For b to print as 1, it must be that S2 S3: e.g., S1, S2, S3, S4
 S1 precedes S4

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

Both of these conditions cannot hold. Prove it.

On a non-SC machine, the outcome of a, b = 0, 1 is possible. What
statement ordering can produce it? s4, s1, s2, s3

In this case, which of the two SC precedence guarantees (above) is
violated? Program order

Let’s take another example.

P0:

S1: a = 1;
S2: print b;

P1:

S3: b = 1;
S4: print a;

Exercise: Assuming that a and b are initialized to 0,

 what values can be printed under SC?
 what values are impossible to print under SC?
 prove that the impossible results can only occur if SC is violated.

Answer: Note that the program is non-deterministic due to a lack of
synchronization.

With SC, S1 S2 and S3 S4 are guaranteed

S1, S2, S3, S4 cause a, b = 1, 0

S3, S4, S1, S2 cause a, b = 0, 1

S1, S3, S2, S4 cause a, b = 1, 1

a, b = 0, 0 is impossible in SC. Proof:

For a to be 0, it must be that S4 S1: S3, S4, S1, S2

For b to be 0, it must be that S2 S3: S1, S2, S3, S4

These cannot both hold, because we would have to have S1 S2
S3 S4 S1.
On a nondeterministic machine, the outcome a, b = 0, 0 is possible.

 S4, S1, S2, S3

Lecture 19 Architecture of Parallel Computers 5

o In this case, S3 S4 is violated

 S2, S3, S4, S1

o In this case, S1 S2 is violated

Both of the previous examples are non-deterministic.

Non-deterministic codes are notoriously hard to debug.

But non-determinism may have legitimate uses. See Code 3.16
(ocean-current simulation) and 3.18 (smoothing filter for grayscale
image).

So, does preserving ordering of memory accesses matter?

 Probably not if non-determinism is intentional

 Otherwise, yes, because:

o Helps keep programmers sane during debugging.

o Even properly synchronized programs need ordering for
the synchronization to work properly.

Building a SC system

[§9.2] Which of the two hypotheses (expectations) can be
guaranteed by software? Maintaining program order

 Ensure that compiler does not reorder memory accesses;
 Declare critical variables as volatile (to avoid register allocation,

code elimination, etc.)

What hypothesis needs to be maintained by hardware? Atomicity

 Execute one memory access one at a time, in program order.
One access needs to be complete before the next can start.

 In the processor pipeline, memory accesses can be overlapped
or reordered.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

o But they must go to the cache in program order.

o A load is complete when the block has been read from
the cache.

o A store is complete when an invalidation has been posted
(on a bus) or acknowledged (see details in §10.2.1).

Example of SC Ordering

 S1: ld R1, A S1 must complete before S2,
 S2: ld R2, B S2 before S3, etc.
 S3: st R3, C
 S4: st R4, D
 S5: ld R5, D

Implications

 If S1 is a cache miss but S2 is a cache hit, S2 still must wait
until S1 is completed. Same with S3 and S4.

 S4 must wait for S3 to complete, even though stores are often
retired early.

 S5 must wait for S4 to complete, even though they are to the
same location!

Improving SC performance

Via prefetching

We still have to obey ordering, but we can make each load/store
complete faster, e.g. by converting cache misses into cache hits:

 Employ load prefetching

o As soon as address is known/predictable,

 fetch before previous loads have completed,

o issue a prefetch request to fetch the block in
Exclusive/Shared state

 Employ store prefetching

Lecture 19 Architecture of Parallel Computers 7

o As soon as address is known/predictable, issue a
prefetch request to fetch the block in Modified state

But this is not a perfect strategy. Why not?

 Prefetch too late

 Prefetch too early

Via speculation

We can violate ordering, but undo the effect if atomicity is violated.

 The ability to undo execution and re-execute is already present in
out-of-order processors (as covered in ECE 563).

o So, we only need to determine when atomicity has been
violated.

 Consider load A, followed by load B

o In strict SC, load B must wait until load A completes

o With speculation, load B accesses the cache anyway; the
processor just marks load B as speculative

o If B is invalidated before it “retires,” atomicity has been
violated.

o In this case, the architecture cancels B and re-executes it.

Store speculation is harder, because stores cannot be canceled.
Hence, only load speculation is employed.

Lecture 20 Architecture of Parallel Computers 1

Relaxed Memory-Consistency Models

Review. Why are relaxed memory-consistency models needed?

How do relaxed MC models require programs to be changed?

The “safety net” between operations whose order needs to be
guaranteed is often a fence instruction.

 The fence ensures that memory operations that are “younger”
are not issued until the older mem ops have globally performed.
The newer instruction must

o wait until all older writes have been posted on the bus (or
received InvAck);

o wait until all older reads have completed;

o flush the pipeline to avoid issuing younger mem ops early
e.g., instructions already in the pipeline may have
previously read the shared variable that was just updated.

 Programmers must insert fences.

What if amateur programmers perform their own synchronization, and
forget fences? Machine does not guarantee correctness.

A continuum of consistency models

Sequential consistency is one view of what a programming model
should guarantee.

Let us introduce a way of diagramming consistency models.
Suppose that—

• The value of a particular memory word in processor 2’s local
memory is 0.

• Then processor 1 writes the value 1 to that word of memory.
Note that this is a remote write.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

• Processor 2 then reads the word. But, being local, the read
occurs quickly, and the value 0 is returned.

What’s wrong with this?

This situation can be diagrammed like this (the horizontal axis
represents time):

P1: W (x)1

P2: R (x)0

Depending upon how the program is written, it may or may not be
able to tolerate a situation like this.

But, in any case, the programmer must understand what can happen
when memory is accessed in a DSM system.

Sequential consistency

Sequential consistency: The result of any execution is the same as
if

• the memory operations of all processors were executed in
some sequential order, and

• the operations of each individual processor appear in this
sequence in the order specified by its program.

Sequential consistency does not mean that writes are instantly visible
throughout the system (it would be impossible to implement that
anyway).

The example below illustrates two sequentially consistent executions.

Note that a read from P2 is allowed to return an out-of-date value
(because it has not yet “seen” the previous write).

P1: W (x)1 P1: W (x)1

P2: R (x)0 R (x)1 P2: R (x)1 R (x)1

Lecture 20 Architecture of Parallel Computers 3

From this we can see that running the same program twice in a row in
a system with sequential consistency may not give the same results.

Causal consistency

The first step in weakening the consistency constraints is to
distinguish between events that are potentially causally connected
and those that are not.

Two events are causally related if one can influence the other.

P1: W (x)1

P2: R (x)1 W (y)2

Here, the write to x could influence the write to y, because P2 might
have read x and used its value to calculate y.

On the other hand, without the intervening read, the two writes would
not have been causally connected:

P1: W (x)1

P2: W (y)2

The following pairs of operations are potentially causally related:

• A read followed by a later write by the same processor.

• A write followed by a later read to the same location.

• The transitive closure of the above two types of pairs of
operations.

Operations that are not causally related are said to be concurrent.

Causal consistency: Writes that are potentially causally related
must be seen in the same order by all processors.

Concurrent writes may be seen in a different order by different
processors.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

Here is a sequence of events that is allowed with a causally
consistent memory, but disallowed by a sequentially consistent
memory:

P1: W (x)1 W (x)3

P2: R (x)1 W (x)2

P3: R (x)1 R (x)3 R (x)2

P4: R (x)1 R (x)2 R (x)3

Why is this not allowed by sequential consistency?

Why is this allowed by causal consistency?

What is the violation of causal consistency in the sequence below?

P1: W (x)1

P2: R (x)1 W (x)2

P3: R (x)2 R (x)1

P4: R (x)1 R (x)2

Without the R (x)1 by P2, this sequence would’ve been causally
consistent.

Implementing causal consistency requires the construction of a
dependency graph, showing which operations depend on which other
operations.

Processor consistency

Causal consistency requires that all processes see causally related
writes from all processors in the same order.

Lecture 20 Architecture of Parallel Computers 5

The next step is to relax this requirement, to require only that writes
from the same processor be seen in order. This gives processor
consistency.

Processor consistency: Writes performed by a single processor are
received by all other processors in the order in which they were issued.

Writes from different processors may be seen in a different order by
different processors.

Processor consistency would permit this sequence that we saw
violated causal consistency:

P1: W (x)1

P2: R (x)1 W (x)2

P3: R (x)2 R (x)1

P4: R (x)1 R (x)2

Another way of looking at this model is that all writes generated by
different processors are considered to be concurrent.

Note: Some definitions of processor consistency require cache
coherence too. Processor consistency without cache coherence is
called PRAM consistency.

Exercise: What is the strongest consistency model that each of the
following satisfy?

P1: W (x)1

P2: R (x)1 W (x)2

P3: R (x)1 R (x)2

P4: R (x)2 R (x)1

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

P1: W (y)1

P2: R (x)1 W (y)2

P3: R (y)1 R (y)2

P4: R (y)2 R (y)1

P1: W (x)1

P2: R (x)1 W (y)2

P3: R (x)1 R (y)2

P4: R (y)2 R (x)1

Sometimes processor consistency can lead to counterintuitive results.
Assume that a and b are initialized to 0.

P1: P2:

a = 1;
if (b == 0)
 kill(p2);

b = 1;
if (a == 0)
 kill(p1);

At first glance, it seems that no more than one process should be
killed.

With processor consistency, however, it is possible for both to be
killed. Explain how.

What processor consistency guarantees

 SC ensures ordering of
o LD LD
o LD ST
o ST LD
o ST ST

 PC removes the STLD constraint, with significant implications
for ILP:

o Values can be loaded into other caches, even if there’s a
store to the same location in some write buffer.

Lecture 20 Architecture of Parallel Computers 7

o Loads do not wait for stores to complete (“perform”), they
access the cache right away (without being speculative!).

o A load dependent on an older store (in the same
processor) can “bypass” (directly obtain the store value
before it is stored).

 PC also removes write atomicity.

 How close is PC to programmers’ expectation?

o Most of the time, very close (e.g., post-wait
synchronization works correctly)

o Major OSes are ported to PC with relative ease

 Cases that cause errors in PC usually are due to races that
also happen in SC.

o However, debugging races in PC is more difficult.

Weak ordering

Processor consistency is still stronger than necessary for many
programs, because it requires that writes originating in a single
processor be seen in order everywhere.

Load

Load

Store

Store

Load
Program
execution

This load
bypasses
2 stores

P1:
data = 2000;
flag = 1;

P2:
while (flag == 0) {};
print data;

P1:
flag1 = 1;
if (flag2 == 0)
 …

P2:
flag2 = 1;
if (flag1 == 0)
 …

PC fails to produce SC results, because PC does
not guarantee ordering betw. store & younger load

PC produces SC results, because
ordering between 2 stores is preserved.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

But it is not always necessary for other processors to see writes in
order—or even to see all writes, for that matter.

Suppose a processor is in a tight loop in a critical section, reading
and writing variables.

Other processes aren’t supposed to touch these variables until the
process exits its critical section.

Under processor consistency, the memory has no way of knowing
that other processes don’t care about these writes, so it has to
propagate all writes to all other processors in the normal way.

To relax our consistency model further, we have to divide memory
operations into two classes and treat them differently.

• Accesses to synchronization variables are sequentially consistent.

• Accesses to other memory locations can be treated as concurrent.

This strategy is known as weak ordering.

With weak ordering, we don’t need to propagate accesses that occur
during a critical section.

We can just wait until the process exits its critical section, and then—

• make sure that the results are propagated throughout the
system, and

• stop other actions from taking place until this has happened.

Similarly, when we want to enter a critical section, we need to make
sure that all previous writes have finished.

These constraints yield the following definition:

Weak ordering: A memory system exhibits weak ordering iff—

1. Accesses to synchronization variables are sequentially
consistent.

2. No access to a synchronization variable can be performed until
all previous writes have completed everywhere.

Lecture 20 Architecture of Parallel Computers 9

3. No data access (read or write) can be performed until all
previous accesses to synchronization variables have been
performed.

Thus, by doing a synchronization before reading shared data, a
process can be assured of getting the most recent values written by
other processes before their immediately preceding Ss.

Note that this model does not allow more than one critical section to
execute at a time, even if the critical sections involve disjoint sets of
variables.

This model puts a greater burden on the programmer, who must
decide which variables are synchronization variables.

Weak ordering says that memory does not have to be kept up to date
between synchronization operations.

This is similar to how a compiler can put variables in registers for
efficiency’s sake. Memory is only up to date when these variables
are written back.

If there were any possibility that another process would want to read
these variables, they couldn’t be kept in registers.

This shows that processes can live with out-of-date values, provided
that they know when to access them and when not to.

The following is a legal sequence under weak ordering. Can you
explain why?

P1: W (x)1 W (x)2 S

P2: R (x)2 R (x)1 S

P3: R (x)1 R (x)2 S

Here’s a sequence that’s illegal under weak ordering. Why?

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 10

P1: W (x)1 W (x)2 S

P2: S R (x)1

Release consistency

Weak ordering does not distinguish between entry to critical section
and exit from it.

Thus, on both occasions, it has to take the actions appropriate to
both:

• making sure that all locally initiated writes have been
propagated to all other memories, and

Load/Store
:

Load/Store

Sync

Load/Store
:

Load/Store

Sync

Load/Store
:

Load/Store

Synch may be implemented as a lock
acquire/release

Before a synch, all previous ops must finish.
Before any ld/st, all previous synch must finish.

Why safe? Typically within a critical section, we have
made sure that only one process is inside, thus safe
to reorder anything in the critical section.

Outside a critical section, we usually do not care
about the order of mem ops (we would have used
synchronization if we had cared).

How to know whether a particular ld/st serves as a
synchronization point?

 Assume all atomic instructions are
synchronization points

o fetch-and-op, test-and-set
 Assume all load linked (LL) and store conditional

(SC) are synchronization points

P1

P2

Lecture 20 Architecture of Parallel Computers 11

• making sure that the local processor has seen all previous
writes anywhere in the system.

If the memory could tell the difference between entry and exit of a
critical section, it would only need to satisfy one of these conditions.

Release consistency provides two operations:

• acquire operations tell the memory system that a critical section
is about to be entered.

• release operations say a c. s. has just been exited.

It is possible to acquire or release a single synchronization variable,
so more than one critical section can be in progress at a time.

When an acquire occurs, the memory will make sure that all the local
copies of shared variables are brought up to date.

When a release is done, the shared variables that have been
changed are propagated out to the other processors.

But—

• doing an acquire does not guarantee that locally made changes
will be propagated out immediately.

• doing a release does not necessarily import changes from other
processors.

Here is an example of a valid event sequence for release consistency
(A stands for “acquire,” and Q for “release” or “quit”):

P1: A (L) W (x)1 W (x)2 Q (L)

P2: A (L)R (x)2 Q (L)

P3: R (x)1

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 12

Note that since P3 has not done a synchronize, it does not
necessarily get the new value of x.

Release consistency: A system is release consistent if it obeys
these rules:

1. Before an ordinary access to a shared variable is performed, all
previous acquires done by the process must have completed.

2. Before a release is allowed to be performed, all previous reads
and writes done by the process must have completed.

3. The acquire and release accesses must be processor
consistent.

If these conditions are met, and processes use acquire and release
properly, the results of an execution will be the same as on a
sequentially consistent memory.

Summary: Sequential consistency is possible, but costly. The model
can be relaxed in various ways.
Consistency models not using synchronization operations:

Type of
consistency

Description

Sequential All processes see all shared accesses in same
order.

Causal All processes see all causally related shared
accesses in the same order.

Processor All processes see writes from each processor in
the order they were initiated. Writes from different
processors may not be seen in the same order,
except that writes to the same location will be seen
in the same order everywhere.

Consistency models using synchronization operations:

Lecture 20 Architecture of Parallel Computers 13

Type of
consistency

Description

Weak Shared data can only be counted on to be
consistent after a synchronization is done.

Release Shared data are made consistent when a critical
region is exited.

The following diagram contrasts various forms of consistency.

Sequential
consistency

Processor
consistency

Weak
ordering

Release
consistency

R
↓
W
↓
R
↓
R
↓
W
:
:

R
↓
R
↓
W
↓

{W, R}
:
:

{M, M}
↓

SYNCH
↓

{M, M}
↓

SYNCH
:
:

{M, M}
↓

ACQUIRE
↓

{M, M}
↓

RELEASE

 {M, M}
 ↓
RELEASE

 RELEASE
 :

Lecture 17 Architecture of Parallel Computers 1

Lock Implementations

[§8.1] Recall the three kinds of synchronization from Lecture 6:

 Point-to-point post() and wait(); send() and receive();
 Lock
 Barrier

Performance metrics for lock implementations

 Uncontended latency

o Time to acquire a lock when there is no contention

 Traffic

o Lock acquisition when lock is already locked
o Lock acquisition when lock is free
o Lock release

 Fairness

o Degree in which a thread can acquire a lock with respect
to others

 Storage

o As a function of # of threads/processors

The need for atomicity

This code sequence illustrates the need for atomicity. Explain.

void lock (int *lockvar) {
 while (*lockvar == 1) {}; // wait until released
 *lockvar = 1; // acquire lock
}

void unlock (int *lockvar) {
 *lockvar = 0;
}

In assembly language, the sequence looks like this:

lock: ld R1, &lockvar // R1 = lockvar
 bnz R1, lock // jump to lock if R1 != 0

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

 sti &lockvar, #1 // lockvar = 1
 ret // return to caller
unlock: sti &lockvar, #0 // lockvar = 0
 ret // return to caller

The ld-to-sti sequence must be executed atomically:

 The sequence appears to execute in its entirety
 Multiple sequences are serialized

Examples of atomic instructions

 test-and-set Rx, M

o read the value stored in memory location M, test the value
against a constant (e.g. 0), and if they match, write the
value in register Rx to the memory location M.

 fetch-and-op M

o read the value stored in memory location M, perform op to
it (e.g., increment, decrement, addition, subtraction), then
store the new value to the memory location M.

 exchange Rx, M

o atomically exchange (or swap) the value in memory
location M with the value in register Rx.

 compare-and-swap Rx, Ry, M

o compare the value in memory location M with the value in
register Rx. If they match, write the value in register Ry to
M, and copy the value in Rx to Ry.

How to ensure one atomic instruction is executed at a time:

1. Reserve the bus until done

o Other atomic instructions cannot get to the bus

Lecture 17 Architecture of Parallel Computers 3

2. Reserve the cache block involved until done

o Obtain exclusive permission (e.g. “M” in MESI)

o Reject or delay any invalidation or intervention requests
until done

3. Provide “illusion” of atomicity instead

o Using load-link/store-conditional (to be discussed later)

Test and set

test-and-set can be used like this to implement a lock:

lock: t&s R1, &lockvar // R1 = MEM[&lockvar];
 // if (R1==0) MEM[&lockvar]=1
 bnz R1, lock; // jump to lock if R1 != 0
 ret // return to caller
unlock: sti &lockvar, #0 // MEM[&lockvar] = 0
 ret // return to caller

What value does lockvar have when the lock is acquired? 1 free? 0

Here is an example of test-and-set execution. Describe what it
shows.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

Let’s look at how a sequence of test-and-sets by three processors
plays out:

Request P1 P2 P3 BusRequest

Initially – – – –

P1: t&s M – – BusRdX

P2: t&s I M – BusRdX

P3: t&s I I M BusRdX

P2: t&s I M I BusRdX

P1: unlock M I I BusRdX

P2: t&s I M I BusRdX

P3: t&s I I M BusRdX

P3: t&s I I M –

P2: unlock I M I BusRdX

P3: t&s I I M BusRdX

P3: unlock I I M –

How does test-and-set perform on the four metrics listed above?

 Uncontended latency
 Fairness
 Traffic
 Storage

Drawbacks of Test&Set Lock (TSL)

What is the main drawback of test&set locks?

 High traffic, many coherence transactions. These retard the
progress of processes that don’t have the lock

 The invalidations by processes trying to get in may make the
critical section slower.

Without changing the lock mechanism, how can we diminish this
overhead?

Lecture 17 Architecture of Parallel Computers 5

 Back off: pause for awhile

o Back off by too little: traffic still high

o Back off by too much: wait longer than necessary

 Exponential back-off: Increase the back-off interval
exponentially with each failure.

Test and Test&Set Lock (TTSL)

 Busy-wait with ordinary read operations, not test&set.

o Cached lock variable will be invalidated when release
occurs

 When value changes (to 0), try to obtain lock with test&set

o Only one attempter will succeed; others will fail and start
testing again.

Let’s compare the code for TSL with TTSL.

TSL:

lock: t&s R1, &lockvar // R1 = MEM[&lockvar];
 // if (R1==0) MEM[&lockvar]=1
 bnz R1, lock; // jump to lock if R1 != 0
 ret // return to caller
unlock: sti &lockvar, #0 // MEM[&lockvar] = 0
 ret // return to caller

TTSL:

lock: ld R1, &lockvar // R1 = MEM[&lockvar]
 bnz R1, lock; // jump to lock if R1 != 0
 t&s R1, &lockvar // R1 = MEM[&lockvar];
 // if (R1==0)MEM[&lockvar]=1
 bnz R1, lock; // jump to lock if R1 != 0
 ret // return to caller

unlock: sti &lockvar, #0 // MEM[&lockvar] = 0
 ret // return to caller

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

The lock method now contains two loops. What would happen if we
removed the second loop? No longer atomic … equivalent to our first
code sequence in the lecture that didn’t enforce mutual exclusion.

Here’s a trace of a TSL, and then TTSL, execution. Let’s compare
them line by line.

Fill out this table:

 TSL TTSL

BusReads 0 6

BusReadXs 9 0

BusUpgrs 0 4

invalidations 8 5

(What’s the proper way to count invalidations?)

Lecture 17 Architecture of Parallel Computers 7

TSL: Request P1 P2 P3 BusRequest

Initially – – – –

P1: t&s M – – BusRdX
P2: t&s I M – BusRdX

P3: t&s I I M BusRdX
P2: t&s I M I BusRdX

P1: unlock M I I BusRdX
P2: t&s I M I BusRdX

P3: t&s I I M BusRdX
P3: t&s I I M –

P2: unlock I M I BusRdX
P3: t&s I I M BusRdX

P3: unlock I I M –

TSL vs. TTSL summary

TTSL: Request P1 P2 P3 Bus Request

Initially – – – –
P1: ld E – - BusRd
P1: t&s M – – –
P2: ld S S – BusRd
P3: ld S S S BusRd
P2: ld S S S –
P1: unlock M I I BusUpgr
P2: ld S S I BusRd
P2: t&s I M I BusUpgr
P3: ld I S S BusRd
P3: ld I S S –
P2: unlock I M I BusUpgr

P3: ld I S S BusRd

P3: t&s I I M BusUpgr

P3: unlock I I M –

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

 Successful lock acquisition:

o 2 bus transactions in TTSL

 1 BusRd to intervene with a remotely cached block

 1 BusUpgr to invalidate all remote copies

o vs. only 1 in TSL

 1 BusRdX to invalidate all remote copies

 Failed lock acquisition:

o 1 bus transaction in TTSL

 1 BusRd to read a copy

 then, loop until lock becomes free

o vs. unlimited with TSL

 Each attempt generates a BusRdX

LL/SC

 TTSL is an improvement over TSL.

 But bus-based locking

o has a limited applicability (explain)

o is not scalable with fine-grain locks (explain)

 Suppose we could lock a cache block instead of a bus …

o Expensive, must rely on buffering or NACK to prevent a
line from being stolen by another processor.

 Instead of providing atomicity, can we provide an illusion of
atomicity instead?

o This would involve detecting a violation of atomicity.
o If something “happens to” the value loaded, cancel the

store (because we must not allow newly stored value to
become visible to other processors)

Lecture 17 Architecture of Parallel Computers 9

o Go back and repeat all other instructions (load, branch,
etc.).

This can be done with two new instructions:

 Load Linked/Locked (LL)

o reads a word from memory, and
o stores the address in a special LL register

o The LL register is cleared if anything happens that may
break atomicity, e.g.,

 A context switch occurs
 The block containing the address in the LL register

is invalidated.

 Store Conditional (SC)
o tests whether the address in the LL register matches the

store address
o if so, store succeeds: store goes to cache/memory;
o else, store fails: the store is canceled, 0 is returned.

Here is the code.

lock: LL R1, &lockvar // R1 = lockvar;
 // LINKREG = &lockvar
 bnz R1, lock // jump to lock if R1 != 0
 add R1, R1, #1 // R1 = 1
 SC R1, &lockvar // lockvar = R1;
 beqz R1, lock // jump to lock if SC fails
 ret // return to caller

unlock: sti &lockvar, #0 // lockvar = 0
 ret // return to caller

Note that this code, like the TTSL code, consists of two loops.
Compare each loop with its TTSL counterpart.

 The first loop
 The second loop

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 10

Here is a trace of execution. Compare it with TTSL.

 Request P1 P2 P3 BusRequest
Initially – – – –
P1: LL E – – BusRd
P1: SC M – – –
P2: LL S S – BusRd
P3: LL S S S BusRd
P2: LL S S S –
P1: unlock M I I BusUpgr
P2: LL S S I BusRd
P2: SC I M I BusUpgr
P3: LL I S S BusRd
P3: LL I S S –
P2: unlock I M I BusUpgr

P3: LL I S S BusRd
P3: SC I I M BusUpgr

P3: unlock I I M –

 Similar bus traffic

o Spinning using loads no bus transactions when the
lock is not free

o Successful lock acquisition involves two bus transactions.
What are they?

 But a failed SC does not generate a bus transaction (in TTSL,
all test&sets generate bus transactions).

o Why don’t SCs fail often?

Limitations of LL/SC

 Suppose a lock is highly contended by p threads
o There are O(p) attempts to acquire and release a lock

Lecture 17 Architecture of Parallel Computers 11

o A single release invalidates O(p) caches, causing O(p)
subsequent cache misses

o Hence, each critical section causes O(p2) network traffic

 Fairness: There is no guarantee that a thread that contends for
a lock will eventually acquire it.

These issues can be addressed by two different kinds of locks.

Ticket Lock

 Ensures fairness, but still incurs O(p2) traffic
 Uses the concept of a “bakery” queue
 A thread attempting to acquire a lock is given a ticket number

representing its position in the queue.
 Lock acquisition order follows the queue order.

Implementation:

ticketLock_init(int *next_ticket, int *now_serving) {
 *now_serving = *next_ticket = 0;
}

ticketLock_acquire(int *next_ticket, int *now_serving) {
 my_ticket = fetch_and_inc(next_ticket);
 while (*now_serving != my_ticket) {};
}

ticketLock_release(int *next_ticket, int *now_serving) {
 *now_serving++;
}

Trace:

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 12

Steps next_ticket now_serving
my_ticket

P1 P2 P3

Initially 0 0 – – –

P1: fetch&inc 1 0 0 – –

P2: fetch&inc 2 0 0 1 –

P3: fetch&inc 3 0 0 1 2

P1:now_serving++ 3 1 0 1 2

P2:now_serving++ 3 2 0 1 2

P3:now_serving++ 3 3 0 1 2

Note that fetch&inc can be implemented with LL/SC.

Array-Based Queueing Locks

With a ticket lock, a release still invalidates O(p) caches.

Idea: Avoid this by letting each thread wait for a unique variable.
Waiting processes poll on different locations in an array of size p.

Just change now_serving to an array! (renamed “can_serve”).

A thread attempting to acquire a lock is given a ticket number in the
queue.

Lock acquisition order follows the queue order

 Acquire
o fetch&inc obtains the address on which to spin (the next

array element).
o We must ensure that these addresses are in different

cache lines or memories
 Release

o Set next location in array to 1, thus waking up process
spinning on it.

Advantages and disadvantages:

 O(1) traffic per acquire with coherent caches
o And each release invalidates only one cache.

Lecture 17 Architecture of Parallel Computers 13

 FIFO ordering, as in ticket lock, ensuring fairness
 But, O(p) space per lock
 Good scalability for bus-based machines

Implementation:

ABQL_init(int *next_ticket, int *can_serve) {
 *next_ticket = 0;
 for (i=1; i<MAXSIZE; i++)
 can_serve[i] = 0;
 can_serve[0] = 1;
}

ABQL_acquire(int *next_ticket, int *can_serve) {
 *my_ticket = fetch_and_inc(next_ticket) % MAXSIZE;
 while (can_serve[*my_ticket] != 1) {};
}

ABQL_release(int *next_ticket, int *can_serve) {
 can_serve[*my_ticket + 1] = 1;
 can_serve[*my_ticket] = 0; // prepare for next time
}

Trace:

Steps next_ticket can_serve[]
my_ticket

P1 P2 P3

Initially 0 [1, 0, 0, 0] – – –

P1: f&i 1 [1, 0, 0, 0] 0 – –

P2: f&i 2 [1, 0, 0, 0] 0 1 –

P3: f&i 3 [1, 0, 0, 0] 0 1 2

P1: can_serve[1]=1 3 [0, 1, 0, 0] 0 1 2

P2: can_serve[2]=1 3 [0, 0, 1, 0] 0 1 2
P3: can_serve[3]=1 3 [0, 0, 0, 1] 0 1 2

Let’s compare array-based queueing locks with ticket locks.

Fill out this table, assuming that 10 threads are competing:

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 14

Ticket locks

Array-based
queueing locks

#of invalidations 9 9

of subsequent
cache misses

9 + 8 + … + 1 = 45 1 + 1 + … + 1 = 9

Comparison of lock implementations

Criterion TSL TTSL LL/SC Ticket ABQL

Uncontested latency Lowest Lower Lower Higher Higher

1 release max traffic O(p) O(p) O(p) O(p) O(1)

Wait traffic High Low – – –

Storage O(1) O(1) O(1) O(1) O(p)

Fairness guaranteed? No No No Yes Yes

Discussion:

 Design must balance latency vs. scalability

o ABQL is not necessarily best.
o Often LL/SC locks perform very well.
o Scalable programs rarely use highly-contended locks.

 Fairness sounds good in theory, but

o Must ensure that the current/next lock holder does not
suffer from context switches or any long delay events

Lecture 20 Architecture of Parallel Computers 1

Barriers

[§8.2] Like locks, barriers can be implemented in different ways,
depending upon how important efficiency is.

 Performance criteria

o Latency: time spent from reaching the barrier to leaving it

o Traffic: number of bytes communicated as a function of
number of processors

 In current systems, barriers are typically implemented in
software using locks, flags, counters.

o Adequate for small systems
o Not scalable for large systems

A thread might have this general organization:

..
parallel region
BARRIER
parallel region
BARRIER
..

Note that barriers are usually constructed using locks, and thus can
use any of the lock implementations in the previous lecture.

A barrier can be implemented like this (first attempt):

// shared variables used in barrier & their initial values
int numArrived = 0;
lock_type barLock = 0;
int canGo = 0;

// barrier implementation
void barrier () {
 lock(&barLock);
 if (numArrived == 0) // first thread sets flag
 canGo = 0;
 numArrived++;

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 2

 int myCount = numArrived;
 unlock(&barLock);

 if (myCount < NUM_THREADS) {
 while (canGo == 0) {}; // wait for last thread
 }
 else { // this is the last thread to arrive
 numArrived = 0; // reset for next barrier
 canGo = 1; // release all threads
 }
}

What’s wrong with this? Suppose the first thread to leave the first
barrier arrives at another barrier (or at this barrier again) and sets
canGo back to 0—before all of the other threads notice that it has
become 1.

Sense-reversal centralized barrier

[§8.2.1] The simplest solution to the correctness problem above just
toggles the barrier …

 the first time, the threads wait for canGo to become 1;
 the next time they wait for it to become 0;
 and then they alternate waiting for it to become 1 and 0 at

successive barriers.

Here is the code:

// variables used in a barrier and their initial values
int numArrived = 0;
lock_type barLock = 0;
int canGo = 0;

// thread-private variable
int valueToAwait = 0;

// barrier implementation
void barrier () {
 valueToAwait = 1 - valueToAwait; // toggle it
 lock(&barLock);
 numArrived++;
 int myCount = numArrived;
 unlock(&barLock);

Lecture 20 Architecture of Parallel Computers 3

 if (myCount < NUM_THREADS) {
 while (canGo != valueToAwait) {}; // await last thread
 }
 else { // this is the last thread to arrive
 numArrived = 0; // reset for next barrier
 canGo = valueToAwait; // release all threads
 }
}

How does the traffic at this barrier scale? Each thread increments
numArrived, which forces all other threads to re-cache the block
(canGo is probably in the same block). O(p2).

Combining-tree barrier

[§8.2.2] A tree-based strategy can be used to reduce contention,
similarly to the way we used partial sums in Lecture 6.

 Threads represent the leaf nodes of a tree.

 The non-leaf nodes are the variables that the threads spin on.

 Each thread spins on the variable of its immediate parent,
which constitutes an intermediate barrier.

 Once all threads have arrived at the intermediate barrier, one of
these threads goes on and spins on the variable immediately
above.

 This is repeated until the root is reached. At this point, the root
releases all threads by setting a flag. (or by propagating the
release flag all the way down the tree to the leaf nodes.)

How does this improve performance? No barrier has more than a
few threads spinning on it. So the number of invalidations is reduced
to O(p) per barrier

But there is an offsetting cost to a combining tree. What is it?
Latency is higher, because threads need to traverse log(p) barriers to
know that all threads have reached the barrier.

[§8.2.3] In very large supercomputers, however, this technique does
not suffice.

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 4

The BlueGene/L system has a special barrier network for
implementing barriers and broadcasting notifications to processors.

The network contains four independent channels.

Each level does a global
and of the signals from
the levels below it.

The signals are combined
in hardware and
propagate to the top of a
combining tree.

The tree can also be used to do a global interrupt when the entire
machine or partition must be stopped as soon as possible “for
diagnostic purposes.”

In this case, each level does a global or of the signals from beneath.

Once the signal propagates to the top of the tree, the resultant
notification is broadcast down the tree.

The round-trip latency is only 1.5 μs for a system of 64K nodes.

