
2/10/2024

1

CSC/ECE 506: Architecture of Parallel Computers

Course OverviewCourse Overview

Lecture 1

(Chapter 1)

http://go.ncsu.edu/ece506

Lecture 1

(Chapter 1)

http://go.ncsu.edu/ece506

1

http://go.ncsu.edu/ece506

CSC/ECE 506: Architecture of Parallel Computers

Learning Objectives

1. Understand the problem of race conditions in
concurrent systems,

2. Learn how to decompose a program for parallel
execution,

3. Be able to write simple parallel programs in the
important programming models,

4. Understand the operation of common cache-
coherence protocols, both bus-based and network-
based, and

5. Learn about common memory-consistency models,
and appreciate the advantages and disadvantages
of each.

2

CSC/ECE 506: Architecture of Parallel Computers

Textbook

3

CSC/ECE 506: Architecture of Parallel Computers

TAs

4

Abhishek Bajaj Tripti Samal

CSC/ECE 506: Architecture of Parallel Computers

Instructor

5

CSC/ECE 506: Architecture of Parallel Computers

6

1

2

3

4

5

6

2/10/2024

2

CSC/ECE 506: Architecture of Parallel Computers

“Attendance” requirement

7

• You are required to “attend” 20 of the 26 classes.

• 16 of these must be in the classroom.

• “Attend”  Respond intelligently to  ½ of Google forms

• Each one not passed  –0.5% on semester average.

• You are required to pass 24 of 25 daily quizzes, plus the
Syllabus Quiz. First one due Wednesday!

• “Passed”  score of  80%

• Each one not passed  –0.5% on semester average.

• You are required to team with 3 students on homework.

• Each teammate you are lacking
 –0.5% on semester average

CSC/ECE 506: Architecture of Parallel Computers

Playposit quizzes

• Three lectures (9, 15, 23) will be videos to watch.

• They have embedded quizzes.

– Do the quizzes to get attendance credit.

CSC/ECE 506: Architecture of Parallel Computers

Zoom session

http://go.ncsu.edu/506zoom
If you join the Zoom session from the
classroom, be sure to let me know.

9

CSC/ECE 506: Architecture of Parallel Computers

Grading

10

CSC/ECE 506: Architecture of Parallel Computers

Homework

• 4 programs

• 3 problem sets*

• 1 peer-reviewed madeup problem

11

*One of the problem sets will be dual submission.

CSC/ECE 506: Architecture of Parallel Computers

Tests

• Two 120-minute midterm tests (10%, 15%
of grade)

• 150-minute final (24% of grade)

• Open notes

• No books, computers or communication
devices

12

7

8

9

10

11

12

2/10/2024

3

CSC/ECE 506: Architecture of Parallel Computers

Extra Credit

• All activities for which extra credit is given
must help other students to learn the course
material.

• Examples
– Making outstanding contributions to answering other

students' questions on Piazza

– Contributing useful practice problems via Peerwise

– Doing extra peer reviews of madeup problems submitted to
Expertiza

– Suggesting Web or print resources that will help other students
write useful madeup problems

13

CSC/ECE 506: Architecture of Parallel Computers
14

Outline for Lecture 1

 Architectural trends

 Types of parallelism

 Flynn taxonomy

 Scope of CSC/ECE 506

CSC/ECE 506: Architecture of Parallel Computers
15

Key Points

• More and more components can be integrated on a single
chip

• Speed of integration tracks Moore’s law, doubling every 18–
24 months.

• Exercise: Look up how the number of transistors per chip has
changed, esp. since 2006. Submit here.

• Until recently, performance tracked speed of integration

• At the architectural level, two techniques facilitated this:
– Cache memory
– Instruction-level parallelism

• Performance gain from uniprocessor system was high
enough that multiprocessor systems were not viable for most
uses.

CSC/ECE 506: Architecture of Parallel Computers
16

Illustration

• 100-processor system with perfect speedup

• Compared to a single processor system
– Year 1: 100x faster

– Year 2: 62.5x faster

– Year 3: 39x faster

– …

– Year 10: 0.9x faster

• Single-processor performance catches up in just a few
years!

• Even worse
– It takes longer to develop a multiprocessor system

– Low volume means prices must be very high

– High prices delay adoption

– Perfect speedup is unattainable

CSC/ECE 506: Architecture of Parallel Computers
17

How did uniprocessor performance grow so fast?

• ≈ half from circuit improvement (smaller
transistors, faster clock, etc.)

• ≈ half from architecture/organization:

• Instruction-level parallelism (ILP)
– Pipelining: RISC, CISC with RISC back-end

– Superscalar

– Out-of-order execution

• Memory hierarchy (caches)
– Exploit spatial and temporal locality

– Multiple cache levels

CSC/ECE 506: Architecture of Parallel Computers
18

But uniprocessor perf. growth has stalled

 Source of performance growth had been ILP
 Parallel execution of independent instructions from a

single thread

 But ILP improvement has slowed abruptly
 Memory wall: Processor speed grows at 55%/year,

memory speed grows at 7% per year
 ILP wall: achieving higher ILP requires quadratically

increasing complexity (and power)

 Power efficiency
 Thermal packaging limit vs. cost

13

14

15

16

17

18

2/10/2024

4

CSC/ECE 506: Architecture of Parallel Computers
19

• Instruction level (cf. ECE 563)

– Pipelining

Types of parallelism

A (a load)

B

C

IF ID MEMEX WB

IF ID MEMEX WB

IF ID MEMEX WB

CSC/ECE 506: Architecture of Parallel Computers
20

Types of parallelism, cont.

• Superscalar/VLIW

• Original:

• Schedule as:

+ Moderate degree of parallelism

– Requires fast communication (register level)

LD F0, 34(R2)

ADDD F4, F0, F2

LD F7, 45(R3)

ADDD F8, F7, F6

LD F0, 34(R2) | LD F7, 45(R3)

ADDD F4, F0, F2 | ADDD F8, F0, F6

CSC/ECE 506: Architecture of Parallel Computers
21

Why ILP is slowing

• Number of pipeline stages is already deep (≈ 20–30
stages)
– But critical dependence loops do not change

– Memory latency requires more clock cycles to satisfy

• Branch-prediction accuracy is already > 90%
– Hard to improve it even more

• Cache size
– Effective, but also shows diminishing returns

– In general, size must be doubled to reduce miss rate by half.

CSC/ECE 506: Architecture of Parallel Computers
22

Current trends: multicore and manycore

IBM CellAMD
Barcelona

Intel
Clovertown

Aspect

8+144# cores

3.2 GHz2.3 GHz2.66 GHzClock
frequency

2-issue SIMDOOO
Superscalar

OOO
Superscalar

Core type

256KB local
store

512KB L2
(private),
2MB L3 (sh’d)

2x4MB L2Caches

100 watts95 watts120 wattsChip power

Exercise: Browse the Web (or the textbook ) for information on more
recent processors, and for each processor, fill out this form. (You can view
the submissions.)

CSC/ECE 506: Architecture of Parallel Computers
23

Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– SIMD (vector architecture)

– MIMD
• Shared memory machines (SMP and DSM)

• Clusters

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers
24

Loop-level parallelism

• Sometimes each iteration can be performed
independently.

• Sometimes iterations cannot be performed independently
 no loop-level parallelism.

+ Very high parallelism > 1K
+ Often easy to achieve load balance
– Some loops are not parallel
– Some apps do not have many loops

for (i=0; i<8; i++)
a[i] = b[i] + c[i];

for (i=0; i<8; i++)
a[i] = b[i] + a[i-1];

19

20

21

22

23

24

2/10/2024

5

CSC/ECE 506: Architecture of Parallel Computers
25

Task-level parallelism

• Arbitrary code segments in a single program

• Across loops:

• Subroutines:

• Threads: e.g., editor: GUI, printing, parsing

+ Larger granularity  low overheads, communication

– Low degree of parallelism

– Hard to balance

…
for (i=0; i<n; i++)

sum = sum + a[i];
for (i=0; i<n; i++)

prod = prod * a[i];
…

Cost = getCost();
A = computeSum();
B = A + Cost;

CSC/ECE 506: Architecture of Parallel Computers
26

Program-level parallelism

• Various independent programs execute together

• gmake:
– gcc –c code1.c // assign to proc1

– gcc –c code2.c // assign to proc2

– gcc –c main.c // assign to proc3

– gcc main.o code1.o code2.o

+ No communication

– Hard to balance

– Few opportunities

CSC/ECE 506: Architecture of Parallel Computers
27

Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– SIMD (vector architecture)

– MIMD
• Shared-memory machines (SMP and DSM)

• Clusters

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers

Taxonomy of parallel computers

The Flynn taxonomy

• Single or multiple instruction streams.

• Single or multiple data streams.

• 1. SISD machine
– Only one instruction fetch stream

– Some not-too-ancient laptops or desktops

Control
unit

Instruction

stream

Data

stream
ALU

CSC/ECE 506: Architecture of Parallel Computers
29

SIMD

• Examples: Vector processors, SIMD extensions (MMX),
GPUs

• A single instruction operates on multiple data items.

Control
unit

Instruction
stream

ALU 2

ALU 1

ALU

n

Data
stream

1

Data
stream

2

Data
stream

n

SISD:
for (i=0; i<8; i++)

a[i] = b[i] + c[i];

SIMD:
a = b + c; // vector addition

CSC/ECE 506: Architecture of Parallel Computers
30

MISD

• Example: CMU Warp

• Systolic arrays

Control
unit 2

ALU 2

ALU 1

ALU

n

Instruction
stream 1

stream 2

stream

n

Data
stream

Instruction

Instruction

Control
unit 1

Control
unit n

25

26

27

28

29

30

2/10/2024

6

CSC/ECE 506: Architecture of Parallel Computers
31

Systolic arrays (contd.)

– Practical realizations (e.g. iWARP) use quite general processors
• Enable variety of algorithms on same hardware

– But dedicated interconnect channels
• Data transfer directly from register to register across channel

– Specialized, and same problems as SIMD
• General-purpose systems work well for same algorithms (locality etc.)

y(i) = w1 ´ x(i) + w2 ´ x(i + 1) + w3 ´ x(i + 2) + w4 ´ x(i + 3)

x8

y3 y2 y1

x7
x6

x5
x4

x3

w4

x2

x

w

x1

w3 w2 w1

xin

yin

xout

yout

xout = x

yout = yin + w ´ xin
x = xin

Example: Systolic array for 1-D convolution

CSC/ECE 506: Architecture of Parallel Computers
32

MIMD

• Independent processors connected together to
form a multiprocessor system.

• Physical organization
– Determines which memory hierarchy level is shared

• Programming abstraction
– Shared Memory:

• on a chip: Chip Multiprocessor (CMP)

• Interconnected by a bus: Symmetric multiprocessors (SMP)

• Point-to-point interconnection: Distributed Shared Memory
(DSM)

– Distributed Memory:
• Clusters, Grid

CSC/ECE 506: Architecture of Parallel Computers
33

MIMD Physical Organization

P

caches

M

P
Shared-cache architecture:
- CMP (or Simultaneous Multi-Threading)
- e.g.: Pentium 4 chip, IBM Power4 chip, Sun
Niagara, Pentium D, etc.

- Implies shared-memory hardware

…

P

caches

M

P

…caches

Network

UMA (Uniform Memory Access)
Shared Memory :
- Pentium Pro Quad, Sun Enterprise,

etc.
- What interconnection network?

- Bus
- Multistage
- Crossbar
- etc.

- Implies shared-memory hardware

CSC/ECE 506: Architecture of Parallel Computers
34

MIMD Physical Organization (2)

P

caches

M …

Network

P

caches

M

NUMA (Non-Uniform Memory Access)
Shared Memory :
- SGI Origin, Altix, IBM p690,
AMD Hammer-based system

- What interconnection network?
- Crossbar
- Mesh
- Hypercube
- etc.

CSC/ECE 506: Architecture of Parallel Computers
35

Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– MIMD

• Shared memory machines (SMP and DSM)

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers
36

Programming models: shared memory

• Shared Memory / Shared Address Space:
– Each processor can see the entire memory

– Programming model = thread programming in
uniprocessor systems

P P P …

Shared M

31

32

33

34

35

36

2/10/2024

7

CSC/ECE 506: Architecture of Parallel Computers

37

Programming models: message-passing

• Distributed Memory / Message Passing / Multiple
Address Space:
– A processor can directly access only its local memory.

– All communication happens by explicit messages.

P

M

P

M

P

M

P

M

CSC/ECE 506: Architecture of Parallel Computers
38

Programming models: data parallel

• Programming model
– Operations performed in parallel on each element of

data structure
– Logically single thread of control, performs sequential

or parallel steps
– Conceptually, a processor associated with each data

element

Control
unit

Instruction
stream

ALU 2

ALU 1

ALU

n

Data
stream

1

Data
stream

2

Data
stream

n

CSC/ECE 506: Architecture of Parallel Computers

Data parallel (cont.)

• Architectural model
– Array of many simple, cheap processing elements

(PEs) each with little memory
• Processing elements don’t sequence through instructions

– PEs are attached to a control processor that issues
instructions

– Specialized and general communication, cheap global
synchronization

• Original motivation
– Matches simple differential equation solvers
– Centralize high cost of instruction fetch/sequencing

39

CSC/ECE 506: Architecture of Parallel Computers
40

Top 500 supercomputers

• http://www.top500.org

• Let’s look at the Earth Simulator, #1 in 2004

• Hardware:
– 5,120 (640 8-way nodes) 500 MHz NEC CPUs

– 8 GFLOPS per CPU (41 TFLOPS total)
• 30s TFLOPS sustained performance!

– 10 TB total memory

• Now (Nov. 2023)
– Frontier, at Oak Ridge National Laboratory, is #1

– 8.7 million cores

– 1194 PFLOP/s max performance (Rmax)

– 1680 PFLOP/s peak performance (Rpeak)

CSC/ECE 506: Architecture of Parallel Computers

Exploring the Top 500 list …

• Lists > Top500 > November 2023 > The list
– See a list of the top systems

• Statistics > List Statistics > Vendors
– Lenovo is top vendor, more than double HPE

• Statistics > List Statistics > Architecture
– Clusters are overwhelmingly dominant

• Statistics > Developm’t over Time > Countries

– China comes from nowhere to lead in # of
systems

– But US still leads in performance share

41

CSC/ECE 506: Architecture of Parallel Computers
42

Exercise

• Go to http://www.top500.org and look at the Lists and
Statistics menus in the top menu bar.

• From the Statistics dropdown,
– choose either List Statistics or Development over time,

– then select one of the statistics, e.g., Vendors, Processor
Architecture, and

– examine what kind of systems are prevalent. Then do the same
for earlier lists, and report on the trend.

• You can go all the way back to the first list from 1993.

• Submit your results here.

37

38

39

40

41

42

Lecture 2 Architecture of Parallel Computers 1

Three parallel-programming models

• Shared-memory programming is like using a “bulletin board”
where you can communicate with colleagues.

• Message-passing is like communicating via e-mail or telephone
calls. There is a well defined event when a message is sent or
received.

• Data-parallel programming is a “regimented” form of
cooperation. Many processors perform an action separately on
different sets of data, then exchange information globally before
continuing en masse.

User-level communication primitives are provided to realize the
programming model

• There is a mapping between language primitives of the
programming model and these primitives

These primitives are supported directly by hardware, or via OS, or via
user software.

In the early days, the kind of programming model that could be used
was closely tied to the architecture.

Today—

• Compilers and software play important roles as bridges
• Technology trends exert a strong influence

The result is convergence in organizational structure, and relatively
simple, general-purpose communication primitives.

A shared address space

In the shared-memory model, processes can access the same
memory locations.

Communication occurs implicitly as result of loads and stores

This is convenient.

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 2

• Wide range of granularities supported.

• Similar programming model to time-sharing on uniprocessors,
except that processes run on different processors

• Wide range of scale: few to hundreds of processors

Good throughput on multiprogrammed workloads.

This is popularly known as the shared memory model, even though
memory may be physically distributed among processors.

The shared-memory model

A process is a virtual address space plus one or more threads of
control.

Portions of the address spaces of tasks are shared.

What does the private region of the virtual address space usually
contain? Stack and any private data.

Conventional memory operations can be used for communication.

Special atomic operations are used for synchronization.

P 1
P 2

P n

P
0

Load

P
2

Virtual address spaces for a
collection of processes com-
municating via shared addresses

Machine
physical address

Shared portion
of address
space

Private portion
of address space

Common physical
addresses

Store

private

P
1 private

P
0 private

P
n private

Lecture 2 Architecture of Parallel Computers 3

The interconnection structure

The interconnect in a shared-memory
multiprocessor can take several forms.

It may be a crossbar switch.

Each processor has a direct connection
to each memory and I/O controller.

Bandwidth scales with the number of
processors.

P

P

C

C

I/O

I/O

M MM M

Unfortunately, cost scales with the square of the # of processors.

This is sometimes called the “mainframe approach.”

At the other end of the spectrum is a shared-bus architecture.

PP

C

I/O

M MC

I/O

$ $

All processors, memories, and I/O controllers are connected to the
bus. Cost scales linearly with the number of processors.

Such a multiprocessor is called a symmetric multiprocessor (SMP).

What are some advantages and disadvantages of organizing a
multiprocessor this way? List them here.

•
•
•

A compromise between these two organizations is a multistage
interconnection network.

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 4

The processors are on one
side, and the memories and
controllers are on the other.

Each memory reference has
to traverse the stages of the
network.

Why is this called a
compromise between the
other two strategies?

0

1

2

3

4

5

6

7

0

2

1

3

4

6

5

7

0

4

1

5

2

6

3

7

0

1

2

3

4

5

6

7

Stage 0 Stage 1 Stage 2

Because it allows more parallel transactions than a shared bus, but
there’s still a chance of two transactions conflicting.

For small configurations, however, a shared bus is quite viable.

Message passing

In a message-passing architecture, a complete computer, including
the I/O, is used as a building block.

Communication is via explicit I/O operations, instead of loads and
stores.

• A program can directly access only its private address space (in
local memory).

• It communicates via explicit messages (send and receive).

It is like a network of workstations (clusters), but more tightly
integrated.

Easier to build than a scalable shared-memory machine.

Send-receive primitives

Lecture 2 Architecture of Parallel Computers 5

The programming model is further removed from basic hardware
operations.

Library or OS intervention is required to do communication.

• send specifies a buffer to be transmitted, and the receiving
process.

• receive specifies sending process, and a storage area to
receive into.

• A memory-to-memory copy is performed, from the address
space of one process to the address space of the other.

• There are several possible variants, including whether send
completes—

when the receive has been executed,

when the send buffer is available for reuse, or

when the message has been sent.

• Similarly, a receive can wait for a matching send to execute, or
simply fail if one has not occurred.

There are many overheads: copying, buffer management, protection.
Let’s describe each of these. Submit your descriptions here.

• Why is there an overhead to copying, compared to a share-
memory machine?

Local
process
address
space

Local
process
address
space

Address X

Address Y

Process P Process Q

send(X, Q)

receive(Y, P)

match!

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 6

• Describe the overhead of buffer management.

• What is the overhead for protection?

Here’s an example from the textbook of the difference between
shared address-space and message-passing programming.

A shared-memory system uses the thread model:

int a, b, signal;
…
void dosum(<args>) {
 while (signal == 0) {}; // wait until instructed to work
 printf(“child thread> sum is %d”, a + b);
 signal = 0; // my work is done
}

void main() {
 signal = 0;
 thread_create(&dosum); // spawn child thread
 a = 5, b = 3;
 signal = 1; // tell child to work
 while (signal == 1) {} // wait until child done
 printf(“all done, exiting\n”);
}

Message-passing uses the process model:

int a, b;
…
void dosum() {
 recvMsg(mainID, &a, &b);
 printf(“child process> sum is %d”, a + b);
}

void main() {
 if (fork() == 0) // I am the child process
 dosum();
 else { // I am the parent process
 a = 5, b = 3;
 sendMsg(childID, a, b);

Lecture 2 Architecture of Parallel Computers 7

 wait(childID);
 printf(“all done, exiting\n”);
 }
}

Here’s the relevant section of documentation on the fork() function:
“Upon successful completion, fork() and fork1() return 0 to the
child process and return the process ID of the child process to the
parent process.”

Interconnection topologies

Early message-passing designs provided hardware primitives that
were very close to the message-passing model.

Each node was connected to a
fixed set of neighbors in a
regular pattern by point-to-point
links that behaved as FIFOs.

A common design was a
hypercube, which had 2  n
links per node, where n was the
number of dimensions.

The diagram shows a 3D cube.

One problem with hypercubes
was that they were difficult to
lay out on silicon.

000001

010011

100

110

101

111

Because of that, 2D meshes eventually supplanted hypercubes.

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

a b c d

a b c d

f

g

h

f

g

h

e

e

Here is an example
of a 16-node mesh.
Note that the last
element in one row is
connected to the first
element in the next.

If the last element in
each row were
connected to the first
element in the same
row, we would have a
torus instead.

Early message-passing machines used a FIFO on each link.

• Thus, software sends were implemented as synchronous
hardware operations at each node.

 What was the problem with this, for multi-hop messages?
You needed interrupts at all the intermediate processors.

• Synchronous ops were replaced by DMA, enabling non-
blocking operations

– A DMA device is a special-purpose controller that transfers
data between memory and an I/O device without processor
intervention.

– Messages were buffered by the message layer of the
system at the destination until a receive took place.

– When a receive took place, the data was copied to the
destination process’s address space.

The diminishing role of topology.

• With store-and-forward routing, topology was important.

Lecture 2 Architecture of Parallel Computers 9

 Parallel algorithms were often changed to conform to the
topology of the machine on which they would be run.

• Introduction of pipelined (“wormhole”) routing made topology
less important.

In current machines, it makes less difference how far the data travels.

This simplifies programming; cost of interprocessor communication is
essentially independent of which processor is receiving the data.

Toward architectural convergence

In 1990, there was a clear distinction between message-passing and
shared-memory machines. Today, there isn’t a distinct boundary.

• Message-passing operations are supported on most shared-
memory machines.

• A shared virtual address space can be constructed on a
message-passing machine, by sharing pages between
processors.

° When a missing page is accessed, a page fault occurs.

° The OS fetches the page from the remote node via
message-passing.

At the machine-organization level, the designs have converged too.

The block diagrams for shared-memory and message-passing
machines look essentially like this:

In shared memory, the network
interface is integrated with the
memory controller.

It initiates a transaction to access
memory at a remote node.

In message-passing, the network
interface is essentially an I/O device.

What does Solihin say about the ease of writing shared-memory and
message-passing programs on these architectures?

M  M M

Network

P

$

P

$

P

$

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 10

 Which model is easier to program for initially?

 Why doesn’t it make much difference in the long run?

Lecture 3 Architecture of Parallel Computers 11

The limits of parallelism: Amdahl’s law

Speedup is defined as

 time for serial execution
time for parallel execution

or, more precisely, as

time for serial execution of best serial algorithm
 time for parallel execution of our algorithm

Give two reasons why it is better to define it the second way than the
first.

[§4.3.1] If some portions of the problem don’t have much
concurrency, the speedup on those portions will be low, lowering the
average speedup of the whole program.

Exercise: Submit your answers to the questions below.

Suppose that a program is composed of a serial phase and a parallel
phase.

 The whole program runs for 1 time unit.

 The serial phase runs for time s, and the parallel phase for
time 1s.

Then regardless of how many processors N are used, the execution
time of the program will be at least ___

and the speedup will be no more than ___. This is known as
Amdahl’s law.

For example, if 25% of the program’s execution time is serial, then
regardless of how many processors are used, we can achieve a
speedup of no more than __.

Efficiency is defined as
 speedup
number of processors

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 12

 Let us normalize computation time so that

• the serial phase takes time 1, and
• the parallel phase takes time p if run on a single processor.

Then if run on a machine with N processors, the parallel phase takes
p/N.

Let  be the ratio of serial time to total execution time. Thus

 
1

1  p/N
 

N
N  p

 .

For large N,  approaches , so efficiency approaches .

Does it help to add processors?

Gustafson’s law: But this is a pessimistic way of looking at the
situation.

In 1988, Gustafson et al. noted that as computers become more
powerful, people run larger and larger programs.

Therefore, as N increases, p tends to increase too. Thus, as N
increases,  does not get very close to 1, and efficiency remains
reasonable.

There may be a maximum to the amount of speedup for a given
problem size, but since the problem is “scaled” to match the
processing power of the computer, there is no clear maximum to
“scaled speedup.”

Gustafson’s law states that any sufficiently large problem can be
efficiently parallelized.

Lecture 3 Architecture of Parallel Computers 13

The limits of parallelism: Amdahl’s law

Speedup is defined as

 time for serial execution
time for parallel execution

or, more precisely, as

time for serial execution of best serial algorithm
 time for parallel execution of our algorithm

Give two reasons why it is better to define it the second way than the
first.

[§4.3.1] If some portions of the problem don’t have much
concurrency, the speedup on those portions will be low, lowering the
average speedup of the whole program.

Exercise: Submit your answers to the questions below.

Suppose that a program is composed of a serial phase and a parallel
phase.

 The whole program runs for 1 time unit.

 The serial phase runs for time s, and the parallel phase for
time 1s.

Then regardless of how many processors N are used, the execution
time of the program will be at least s

and the speedup will be no more than 1/s. This is known as
Amdahl’s law.

For example, if 25% of the program’s execution time is serial, then
regardless of how many processors are used, we can achieve a
speedup of no more than 4.

Efficiency is defined as
 speedup
number of processors

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 14

 Let us normalize computation time so that

• the serial phase takes time 1, and
• the parallel phase takes time p if run on a single processor.

Then if run on a machine with N processors, the parallel phase takes
p/N.

Let  be the ratio of serial time to total execution time. Thus

 
1

1  p/N
 

N
N  p

 .

For large N,  approaches 1, so efficiency approaches 0.

Does it help to add processors? Not much.

Gustafson’s law: But this is a pessimistic way of looking at the
situation.

In 1988, Gustafson et al. noted that as computers become more
powerful, people run larger and larger programs.

Therefore, as N increases, p tends to increase too. Thus, as N
increases,  does not get very close to 1, and efficiency remains
reasonable.

There may be a maximum to the amount of speedup for a given
problem size, but since the problem is “scaled” to match the
processing power of the computer, there is no clear maximum to
“scaled speedup.”

Gustafson’s law states that any sufficiently large problem can be
efficiently parallelized.

Lecture 4 Architecture of Parallel Computers 15

Shared-Memory Parallel
Programming

[§3.1] Solihin identifies several
steps in parallel programming.

The first step is identifying parallel
tasks. Can you give an example?

The next step is identifying
variable scopes. What does this
mean?

The next step is grouping tasks
into threads. What factors need
to be taken into account to do
this? Tasks should not have a lot
of data dependencies, because
that requires a lot of
synchronization. They should not
be too fine grained, There should
be enough to make use of the
available processors, and the load should be balanced among the
processors.

Then threads must be synchronized. How did we see this done in the
three parallel-programming models?

What considerations are important in mapping threads to processors?

Solihin says that there are three levels of parallelism:

 program level
 algorithm level
 code level

Identifying loop-level parallelism

[§3.2] Goal: given a code, without knowledge of the algorithm, find
parallel tasks.

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 16

Focus on loop-dependence analysis.

Notations:

 S is a statement in the source code

 S[i, j, …] denotes a statement in the loop iteration [i, j, …]

 “S1 then S2” means that S1 happens before S2

 If S1 then S2:

S1 T S2 denotes true dependence, i.e., S1 writes to a
location that is read by S2

S1 A S2 denotes anti-dependence, i.e., S1 reads a
location written by S2

S1 O S2 denotes output dependence, i.e., S1 writes to the
same location written by S2

Example:

S1: x = 2;
S2: y = x;
S3: y = x + 4;
S4: x = y;

Exercise: Identify the dependences in the above code.

Loop-independent vs. loop-carried dependences

[§3.2] Loop-carried dependence: dependence exists across
iterations; i.e., if the loop is removed, the dependence no longer
exists.

Loop-independent dependence: dependence exists within an
iteration; i.e., if the loop is removed, the dependence still exists.

Lecture 4 Architecture of Parallel Computers 17

Example:

S1[i] T S1[i+1]: loop-carried

S1[i] T S2[i]: loop-
independent

S3[i,j] T S3[i,j+1]:

 loop-carried on for j
loop

 no loop-carried
dependence in for i
loop

S4[i,j] T S4[i+1,j]:

 no loop-carried dependence in for j loop

 loop-carried on for i loop

Iteration-space Traversal Graph (ITG)

[§3.2.1] The ITG shows graphically the order of traversal in the
iteration space. This is sometimes called the happens-before
relationship. In an ITG,

 A node represents a point in the iteration space

 A directed edge indicates the next point that will be
encountered after the current point is traversed

Example:

for (i=1; i<n; i++) {
 S1: a[i] = a[i-1] + 1;
 S2: b[i] = a[i];
}

for (i=1; i<n; i++)
 for (j=1; j< n; j++)
 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<n; i++)
 for (j=1; j< n; j++)
 S4: a[i][j] = a[i-1][j] + 1;

for (i=1; i<4; i++)
 for (j=1; j<4; j++)
 S3: a[i][j] = a[i][j-1] + 1;

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 18

Loop-carried Dependence Graph (LDG)

 LDG shows the true/anti/output dependence relationship
graphically.

 A node is a point in the iteration space.

 A directed edge represents the dependence.

Example:

i

j

1

2

3

3 2 1

for (i=1; i<4; i++)
 for (j=1; j<4; j++)
 S3: a[i][j] = a[i][j-1] + 1;

Lecture 4 Architecture of Parallel Computers 19

Another example:

 Draw the ITG

 List all the dependence relationships

Note that there are two “loop nests” in the code.

 The first involves S1.
 The other involves S2 and S3.

What do we know about the ITG for these nested loops?

1

2

3

3 2 1

i

j

T T

T T

T T

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {
 S2: a[i][j] = b[i][j] + c[i][j];
 S3: b[i][j] = a[i][j-1] * d[i][j];
 }

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 20

Dependence relationships for Loop Nest 1

 True dependences: Current iteration needs to write before
next iteration reads

o S1[i,j] T S1[i,j+1]
o S1[i,j] T S1[i+1,j]

 Output dependences:

o None

 Anti-dependences: Current iteration needs to read before
other code overwrites.

o S1[i,j] A S1[i+1,j]
o S1[i,j] A S1[i,j+1]

Exercise: Suppose we dropped off the first half of S1, so we had

S1: a[i][j] = a[i-1][j] + a[i+1][j];

or the last half, so we had

S1: a[i][j] = a[i][j-1] + a[i][j+1];

Which of the dependences would still exist?

i

1

2

n

n 2 1 . . .

. . .

Lecture 4 Architecture of Parallel Computers 21

1st half 2nd half
S1[i,j] T S1[i+1,j],
S1[i,j] A S1[i+1,j]

S1[i,j] T S1[i,j+1],
S1[i,j] A S1[i,j+1]

These are the dependences on
the same row, as you would
expect, because iteration is only
being done using points in the
same row.

These are the dependences on
the same column, as you would
expect, b/c iteration is only being
done using points in the same
column.

Draw the LDG for Loop Nest 1.

Dependence relationships for Loop Nest 2

 True dependences:

o S2[i,j] T S3[i,j+1]

 Output dependences:

o None

 Anti-dependences:

o S2[i,j] A S3[i,j] (loop-independent dependence)

i

j

1

2

n

n 2 1 . . .

. . .

Note: each
edge represents
both true and
anti-dependences

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 22

Draw the LDG for Loop Nest 2.

Why are there no vertical edges in this graph? Answer here.

Why is the anti-dependence not shown on the graph?

Exercise: Consider this code sequence.

for (i = 3; i < n; i++) {
for (j = 0; j < n - 3; j++) {

S1: A[i][j] = A[i - 3][j] + A[i][j + 3];
S2: B[i][j] = A[i][j] / 2;

}
}

List the dependences, and say whether they are loop independent or
loop carried. Then draw the ITG and LDG (you don’t need to submit
these).

i

j

1

2

n

n 2 1 . . .

. . .

Note: each
edge represents
only true dependences

Lecture 5 Architecture of Parallel Computers 23

Finding parallel tasks across iterations

[§3.3.1] Analyze loop-carried dependences:

 Dependences must be enforced (especially true dependences;
other dependences can be removed by privatization)

 There are opportunities for parallelism when some
dependences are not present.

Example 1

LDG:

We can divide the loop into two parallel
tasks (one with odd iterations and
another with even iterations):

for (i=2; i<=n; i++)
 S: a[i] = a[i-2];

for (i=2; i<=n; i+=2)
 S: a[i] = a[i-2];
for (i=3; i<=n; i+=2)
 S: a[i] = a[i-2];

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 24

Example 2

LDG

How many parallel tasks are there here? n

Example 3

LDG

Identify which
nodes are not
dependent on each other

i

j

1

2

n

n 2 1 . . .

. . .

for (i=0; i<n; i++)
 for (j=0; j< n; j++)
 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

j

1

2

n

n21 . .
.

Note: each
edge represents
both true, and
anti-dependences

Lecture 5 Architecture of Parallel Computers 25

In each anti-diagonal, the nodes are independent of each other

We need to rewrite the code to iterate over anti-diagonals:

Calculate number of anti-diagonals
for each anti-diagonal do
 Calculate the number of points in the current anti-diagonal
 for_all points in the current anti-diagonal do
 Compute the value of the current point in the matrix

Parallelize the loops highlighted above.

i

1

2

n

n21 ...

...

Note: each
edge represents
both true, and
anti-dependences

for (i=1; i <= 2*n-1; i++) {// 2n-1 anti-diagonals
 if (i <= n) {
 points = i; // number of points in anti-diag
 row = i; // first pt (row,col) in anti-diag
 col = 1; // note that row+col = i+1 always
 }
 else {
 points = 2*n – i;
 row = n;
 col = i-n+1; // note that row+col = i+1 always
 }
 for_all (k=1; k <= points; k++) {
 a[row][col] = … // update a[row][col]
 row--; col++;
 }
}

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 26

DOACROSS Parallelism

[§3.3.2] Suppose we have this code:

Can we execute anything
in parallel?

Well, we can’t run the iterations of the for loop in parallel, because
…

S[i] T S[i+1] (There is a loop-carried dependence.)

But, notice that the b[i]*c[i] part has no loop-carried
dependence.

This suggests breaking up the loop into two:

The first loop is ||izable.
The second is not.

Execution time:
N(TS1+TS2)

What is a disadvantage of
this approach? It uses more memory, for the temp array. Execution
time = NTS1 + NTS2

Here’s how to solve this problem:

What is the execution time now? TS1 +
NTS2

for (i=1; i<=N; i++) {
 S1: temp[i] = b[i] * c[i];
}
for (i=1; i<=N; i++) {
 S2: a[i] = a[i-1] + temp[i];
}

post(0);
for_all (i=1; i<=N; i++) {
 S1: temp = b[i] * c[i];
 wait(i-1);
 S2: a[i] = a[i-1] + temp;
 post(i);
}

for (i=1; i<=N; i++) {
 S: a[i] = a[i-1] + b[i] * c[i];
}

Lecture 5 Architecture of Parallel Computers 27

Function parallelism

 [§3.3.3] Identify dependences in a loop body.

 If there are independent statements, can split/distribute the
loops.

Example:

Loop-carried
dependences:

S1[i] T S1[i+1]
S1[i] A S2[i+1]
S4[i] T S4[i+1]

Loop-indep. dependences:
S1[i] T S3[i]

Note that S4 has no dependences with other statements

After loop distribution:

Each loop is a parallel
task.

This is called function
parallelism.

It can be distinguished
from data parallelism,
which we saw in DOALL

and DOACROSS.

Further transformations can be performed (see p. 64 of text).

 “S1[i] A S2[i+1]” implies that S2 at iteration i+1 must be
executed after S1 at iteration i. Hence, the dependence is not
violated if all S2s execute after all S1s.

Characteristics of function parallelism:

 Parallelism is of modest size, does not grow with input.

 Little sync, only at beginning and end.

for (i=0; i<n; i++) {
 S1: a[i] = b[i+1] * a[i-1];
 S2: b[i] = b[i] * coef;
 S3: c[i] = 0.5 * (c[i] + a[i]);
 S4: d[i] = d[i-1] * d[i];
}

for (i=0; i<n; i++) {
 S1: a[i] = b[i+1] * a[i-1];
 S2: b[i] = b[i] * coef;
 S3: c[i] = 0.5 * (c[i] + a[i]);
}

for (i=0; i<n; i++) {
 S4: d[i] = d[i-1] * d[i];
}

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 28

 Difficult to balance load.

Can use function parallelism along with data parallelism when data
parallelism is limited.

DOPIPE Parallelism

[§3.3.4] Another strategy for loop-carried dependences is pipelining
the statements in the loop.

Consider this situation:

Loop-carried dependences:

S1[i] T S1[i+1]

Loop-indep. dependences:

S1[i] T S2[i]

To parallelize, we just need to make sure the two statements are
executed in sync:

Qu
esti
on:
Wh
at’s
the
diff

erence between DOACROSS and
DOPIPE?

for (i=2; i<=N; i++) {
 S1: a[i] = a[i-1] + b[i];
 S2: c[i] = c[i] + a[i];
}

for (i=2; i<=N; i++) {
 a[i] = a[i-1] + b[i];
 post(i);
}

for (i=2; i<=N; i++) {
 wait(i);
 c[i] = c[i] + a[i];
}

Lecture 5 Architecture of Parallel Computers 29

Determining variable scope

[§3.6] This step is specific to the shared-memory programming
model. For each variable, we need to decide how it is used. There
are three possibilities:

 Read-only: variable is only read by multiple tasks

 R/W non-conflicting: variable is read, written, or both by only
one task

 R/W conflicting: variable is written by one task and may be read
by another

Intuitively, why are these cases different? RO … no updates ever
occur, so you can copy without having to keep copies up to date.
With RWn, you don’t have to worry about other tasks. With RWc, you
need to synchronize access.

Example 1

Let’s assume
each iteration
of the for i
loop is a
parallel task.

Fill in the tableaus here.

Read-only R/W non-conflicting R/W conflicting

n, c, d a, b i, j

Now, let’s assume that each for j iteration is a separate task.

Read-only R/W non-conflicting R/W conflicting

n, i, c, d b a, j

Do these two decompositions create the same number of tasks?
No, for I creates n tasks; for j creates n2

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {
 S2: a[i][j] = b[i][j] + c[i][j];
 S3: b[i][j] = a[i][j-1] * d[i][j];
 }

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 30

Example 2

Let’s assume that
each for j iteration is
a separate task.

Read-only R/W non-conflicting R/W conflicting

n, i, c, d a, b, e j

Exercise: Suppose each for i iteration were a separate task …

Read-only R/W non-conflicting R/W conflicting
n, c, d b, e a, i, j

To test your knowledge of this approach, try the recent homework
problem on the following page:

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {
 S1: a[i][j] = b[i][j] + c[i][j];
 S2: b[i][j] = a[i-1][j] * d[i][j];
 S3: e[i][j] = a[i][j];
 }

Lecture 5 Architecture of Parallel Computers 31

Problem k. (15 points) The following code is a commonly used algorithm in image processing
applications.

Consider an image f with width=ImageWidth and height=ImageHeight. f is a 2D grid of pixels. k is
a kernel of width=2w+1 and height=2h+1 where (2w+1) < ImageWidth and (2h+1) < ImageHeight.
The image f is processed using the kernel k to produce a new image g as shown:

for y = 0 to ImageHeight do
 for x = 0 to ImageWidth do
 sum = 0
 for i= -h to h do
 for j = –w to w do
 sum = sum + k[j,i] * f [x – j, y – i]

 end for
 end for
 g[x y] = sum
 end for
end for

(a). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if the for y loop is
parallelized.

Read only R/W non-conflicting R/W conflicting

(b). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if (only) the for i
loop is parallelized. Assume that the for i tasks for the previous value of x must complete before
the for i tasks of the current value of x are started.

Read only R/W non-conflicting R/W conflicting

(c). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if the for i loop is
parallelized. Assume that the for i tasks for the previous value of x do not have to complete
before the for i tasks of the current value of x are started.

Read only R/W non-conflicting R/W conflicting

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 32

Privatization

Privatization means making private copies of a shared variable.

What is the advantage of privatization?
Tasks can run in parallel without paying attention to what other task is
accessing the variable.

Of the three kinds of variables in the table above, which kind(s) does
it make sense to privatize? R/W conflicting; other variables can
simply be accessed where they reside in memor.

Under what conditions is a variable privatizable?

 If it is always defined (=written) in program order by a task
before use (=read) by the same task (Case 1).

 If its values in different parallel tasks are known ahead of time,
allowing private copies to be initialized to the known values
(Case 2).

When a variable is privatized, one private copy is made for each
thread (not each task).

Result of privatization: R/W conflicting  R/W non-conflicting

Let’s revisit the examples.

Example 1

With each for i
iteration a separate
task, which of the
R/W conflicting
variables are privatizable? i, j

Which case does each such variable fall into?
i falls into Case 2 (value known ahead of time)

j is Case 1 (always written by a task before being read by the task)

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {
 S2: a[i][j] = b[i][j] + c[i][j];
 S3: b[i][j] = a[i][j-1] * d[i][j];
 }

Lecture 6 Architecture of Parallel Computers 33

We can think of privatized variables as arrays, indexed by process ID:

Example 2

Parallel tasks: each for j loop iteration.

Is the R/W conflicting variable j privatizable? If so, which case does it
represent? Yes, Case 2.

Reduction

Reduction is another way to remove conflicts. It is based on partial
sums.

Suppose we have a large matrix, and need to
perform some operation on all of the elements—
let’s say, a sum of products—to produce a single
result.

We could have a single processor undertake this,
but this is slow and does not make good use of the
parallel machine.

So, we divide the matrix into portions, and have one processor work
on each portion.

Then after the partial sums are complete, they are combined into a
global sum. Thus, the array has been “reduced” to a single element.

Examples:

 addition (+), multiplication (*)

 Logical (and, or, …)

The reduction variable is the scalar variable that is the result of a
reduction operation.

Criteria for reducibility:

 Reduction variable is updated by each task, and the order of
update is not important.

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 34

 Hence, the reduction operation must be associative and
commutative.

Goal: Compute

y = y_init op x1 op x2 op x3 … op xn

op is a reduction operator if it is commutative

 u op v = v op u

and associative

(u op v) op w = u op (v op w)

Summary of scope criteria

Should be
declared private

Should be
declared
shared

Should be de-
clared

reduction

Non-
privatizable

R/W conflicting

privatizable
variables

read-only vars.

R/W non-
conflicting

reduction
variables

declare as
shared, protect

by synch.

Example 1

with for i parallel
tasks

Fill in the answers
here.

Read-only R/W non-conflicting R/W conflicting

n, c, d a, b i, j

Declare as shared Declare as private

n, c, d a, b i, j

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {
 S2: a[i][j] = b[i][j] + c[i][j];
 S3: b[i][j] = a[i][j-1] * d[i][j];
 }

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {
 S1: a[i][j] = b[i][j] + c[i][j];
 S2: b[i][j] = a[i-1][j] * d[i][j];
 S3: e[i][j] = a[i][j];
 }

Lecture 6 Architecture of Parallel Computers 35

Example 2

with for j parallel tasks

Fill in the answers here.

Read-only R/W non-conflicting R/W conflicting
n, i, c, d a, b, e j

Declare as shared Declare as private

n, i, c, d a, b, e j

Example 3

Consider matrix
multiplication.

Exercise:
Suppose the
parallel tasks are
for k iterations. Determine which variables are conflicting, which
should be declared as private, and which need to be protected
against concurrent access by using a critical section.

Read-only R/W non-conflicting R/W conflicting

A, B, i, j, n C, k

Declare as shared Declare as private

A, B, i, j, n, C k

Which variables, if any, need to be protected by a critical section?

C

Now, suppose the parallel tasks are for i iterations. Determine which
variables are conflicting, which should be declared as private, and

for (i=0; i<n; i++)
 for (j=0; j<n; j++) {
 C[i][j] = 0.0;
 for (k=0; k<n; k++) {
 C[i][j] = C[i][j] + A[i][k]*B[k][j];
 }
 }
}

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 36

which need to be protected against concurrent access by using a
critical section.

Read-only R/W non-conflicting R/W conflicting

A, B, n C i, j, k

Declare as shared Declare as private

A, B, n, C i, j, k

Which variables, if any, need to be protected by a critical section?
None.

Synchronization

Synchronization is how programmers control the sequence of
operations that are performed by parallel threads.

Three types of synchronization are in widespread use.

 Point-to-point:

o a pair of post() (or signal())and wait()

o a pair of send() and recv() in message passing

 Lock

o a pair of lock() and unlock()

o only one thread is allowed to be in a locked region at a
given time

o ensures mutual exclusion

o used, for example, to serialize accesses to R/W
concurrent variables.

 Barrier

o a point past which a thread is allowed to proceed only
when all threads have reached that point.

Lock

Lecture 6 Architecture of Parallel Computers 37

What problem may arise here?

Two threads may read sum and increment it by a[i] before the other
has finished. Then one of the increments will be lost.

A lock prevents more than one thread from being inside the locked
region.

Issues:

 What granularity to lock?

 How to build a lock that is correct and fast.

Barrier: Global event synchronization

// inside a parallel region
for (i=start_iter; i<end_iter; i++)
 sum = sum + a[i];

// inside a parallel region
for (i=start_iter; i<end_iter; i++) {
 lock(x);
 sum = sum + a[i];
 unlock(x);
}

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 38

A barrier is used when the code that follows requires that all threads
have gotten to this point. Example: Simulation that works in terms of
timesteps.

Load balance is important.

Execution time is dependent on the slowest thread.

This is one reason for gang scheduling and avoiding time sharing and
context switching.

Lecture 6 Architecture of Parallel Computers 39

Question 1. (a) (18 points) Considert the following algorithm. If we are to parallelize this
algorithm for each for loop, fill in the table appropriately for each variable used.

for (i = 0; i < n; i++){
 for (j = 0; j < n; j++){
 for (k = 0; k < n; k++){
 if (d[i][j] - d[j][k] < d[i][k]) {
 b[j][k] = k*j;

d[i][j] = d[j][k] + d[i][k];
}

 }
 }
}

Which loop parallelized?  for i for j for k

Read-only n i, n

RW non-conflicting b

RW conflicting i, j, k, b, d d, j, k

Private i, j, k j, k

Shared b, d, n d, i, n, b

(b) (2 points) Do any of the shared variables need to be protected by a critical section? Explain.

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 40

Simulating ocean currents

We will study a parallel application that simulates ocean currents.

Goal: Simulate the motion of water currents in the ocean. Important
to climate modeling.

The overall structure of the program looks like this:

The program offers opportunities for function parallelism (the different
blocks in a row) and data parallelism (parallelism within a block).

Lecture 7 Architecture of Parallel Computers 41

We will concentrate on solving the equation for ψa (data parallelism).

Motion depends on atmospheric forces, friction with ocean floor, and
“friction” with ocean walls.

To predict the state of the ocean at any instant, we need to solve
complex systems of equations.

The problem is continuous in both space and time.
But to solve it, we discretize it over both dimensions.

Every important variable, e.g.,

• pressure • velocity • currents

has a value at each grid point.

This model uses a set of 2D horizontal cross-sections through the
ocean basin.

Equations of motion are solved at all the grid points in one time-step.

 The state of the variables is updated, based on this solution.

 The equations of motion are solved for the next time-step.

Tasks

The first step is to divide the work into tasks.

(a) Cross sections

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 42

 A task is an arbitrarily defined portion of work.

 It is the smallest unit of concurrency that the program can exploit.

Example: In the ocean simulation, a task can be computations on—

 a single grid point,
 a row of grid points, or
 any arbitrary subset of the grid.

Tasks are chosen to match some natural granularity in the work.

 If the grain is small, the decomposition is called fine grained.

 If it is large, the decomposition is called coarse grained.

Threads

A thread is an abstract entity that performs tasks.

 A program is composed of cooperating threads.
 Each thread is assigned to a processor.
 Threads need not correspond 1-to-1 with processors!

Example: In the ocean simulation, an equal number of rows may be
assigned to each thread.

Four steps in parallelizing a program:

 Decomposition of the computation into tasks.
 Assignment of tasks to threads.
 Orchestration of the necessary data access, communication,

and synchronization among threads.
 Mapping of threads to processors.

Lecture 7 Architecture of Parallel Computers 43

Together, decomposition and assignment are called partitioning.

They break up the computation into tasks to be divided among
threads.

The number of tasks available at a time is an upper bound on the
achievable parallelism.

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload
Reduce communication volume

Orchestration Yes Reduce noninherent communication via data
locality

Reduce communication and synchronization cost
as seen by the processor

Reduce serialization at shared resources
Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if
necessary

Exploit locality in network topology

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program

A
s
s
i
g
n
m
e
n
t

D
e
c
o
m
p
o
s
i
t
i
o
n

M
a
p
p
i
n
g

O
r
c
h
e
s
t
r
a
t
i
o
n

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 44

Parallelization of an Example Program

[§2.3] In this lecture, we will consider a parallelization of the kernel of
the Ocean application.

The serial program

The equation solver solves a PDE on a grid.

It operates on a regular 2D grid of (n+2) by (n+2) elements.

• The boundary elements in the border rows and columns do not
change.

• The interior n-by-n points are updated, starting from their initial
values.

A [i,j] = 0.2  (A [i,j] + A [i,j – 1] + A [i – 1 , j] +

A [i,j + 1] + A [i + 1, j])

Expr ession for updating each interior point:

• The old value at each point is replaced by the weighted
average of itself and its 4 nearest-neighbor points.

• Updates are done from left to right, top to bottom.

° The update computation for a point sees the new values of
points above and to the left, and

° the old values of points below and to the right.

 This form of update is called the Gauss-Seidel method.

During each sweep, the solver computes how much each element
has changed since the last sweep.

Lecture 7 Architecture of Parallel Computers 45

• If the sum of these differences is less than a “tolerance”
parameter, the solution has converged.

• If so, we exit solver; if not, we do another sweep.

Here is the code for the solver.

Answer these questions about the solver.

Why is the array size (n+2)(n+2) rather than nn?

Why is it necessary to use a temp variable?

Why is the denominator in Line 25 n*n?

1. int n; /*size of matrix: (n + 2-by-n + 2) elements*/
2. double **A, diff = 0;

3. main()
4. begin
5. read(n) ; /*read input parameter: matrix size*/
6. A  malloc (a 2-d array of size n + 2 by n + 2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve (A) /*solve the equation system*/
11. double **A; /*A is an (n + 2)-by-(n + 2) array*/
12. begin
13. int i, j, done = 0;
14. float diff = 0, temp;
15. while (!done) do /*outermost loop over sweeps*/
16. diff = 0; /*initialize maximum difference to 0*/
17. for i  1 to n do /*sweep over nonborder points of grid*/
18. for j  1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /*compute average*/
22. diff += abs(A[i,j] - temp);
23. end for
24. end for
25. if (diff/(n*n) < TOL) then done = 1;
26. end while
27. end procedure

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 46

Decomposition

A simple way to identify concurrency is to look at loop iterations.

Is there much concurrency in this example? Does the algorithm let
us perform more than one sweep concurrently? No, we can only start
the i+1st iteration after we finish the ith.

Note that—

• Computation proceeds from left to right and top to bottom.

• Thus, to compute a point, we use

° the updated values from the point above and the point to the
left, but

° the “old” values of the point itself and its neighbors below
and to the right.

Here is a diagram that illustrates the dependences.

The horizontal and vertical
lines with arrows indicate
dependences.

The dashed lines along the
antidiagonal connect points
with no dependences that can
be computed in parallel.

Check: If A[3,4]is being
computed, which updated
values are used in the
calculation? A[2, 4], A[3, 3]

Which of the following points can be updated in parallel?

Of the O(n2) work in each sweep,  concurrency proportional to
the number of antidiagonals. (Give your answer in terms of n; how
many points along an antidiagonal can be computed in parallel?)

How could we exploit this parallelism?

Lecture 7 Architecture of Parallel Computers 47

• We can leave loop structure alone and let loops run in parallel,
inserting synchronization ops to make sure a value is computed
before it is used.

Why isn’t this a good idea?

• We can change the loop structure, making

° the outer for loop (line 17) iterate over anti-diagonals, and

° the inner for loop (line 18) iterate over elements within an
antidiagonal.

Why isn’t this a good idea?

The Gauss-Seidel algorithm doesn’t require us to update the points
from left to right and top to bottom.

It is just a convenient way to program on a uniprocessor.

We can compute the points in another order, as long as we use
updated values frequently enough (if we don’t, the solution will
converge, but more slowly).

Red-black ordering

Let’s divide the points into alternating “red” and “black” points:

Red point

Black point

To compute a red point, we don’t need the updated value of any other
red point. But we need the updated values of 2 black points.

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 48

And similarly for computing black points.

Thus, we can divide each sweep into two phases.

• First we compute all red points.
• Then we compute all black points.

True, we don’t use any updated black values in computing red points.

But we use all updated red values in computing black points.

Whether this converges more slowly or faster than the original
ordering depends on the problem.

But it does have important advantages for parallelism.

• Which points can be computed in parallel?

• Altogether, how many red points can be computed in parallel?

• How many black points can be computed in parallel?

Red-black ordering is effective, but it doesn’t produce code that can
fit on a single display screen.

A simpler decomposition

Another ordering that is simpler but still works reasonably well is just
to ignore dependences between grid points within a sweep.

A sweep just updates points based on their nearest neighbors,
regardless of whether the neighbors have been updated yet.

Global synchronization is still used between sweeps, however.

Lecture 7 Architecture of Parallel Computers 49

Now execution is no longer deterministic. (Does this matter?)

The number of sweeps needed, and the results, may depend on the
number of processors used.

But for most reasonable assignments of processors, the number of
sweeps will not vary much.

Let’s look at the code for this.

The only difference is that for has been replaced by for_all.

A for_all just tells the system that all iterations can be executed in
parallel.

With for_all in both loops, all n2 iterations of the nested loop can be
executed in parallel.

We could write the program so that the computation of one row of
grid points must be assigned to a single processor. How would we
do this? Make the outer loop for_all, but the inner loop would
change back to for.

With each row assigned to a different processor, each task has to
access about 2n grid points that were computed by other processors;
meanwhile, it computes n grid points itself.

So the communication-to-computation ratio is O(1).

15. while (!done) do /*a sequential loop*/
16. diff = 0;
17. for_all i  1 to n do /*a parallel loop nest*/
18. for_all j  1 to n do
19. temp = A[i,j];
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. diff += abs(A[i,j] - temp);
23. end for_all
24. end for_all
25. if (diff/(n*n) < TOL) then done = 1;
26. end while

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 50

Assignment

How can we statically assign elements to processes?

• One option is “block
assignment”—Row i is
assigned to process i / p.

p
0

p
1

p
2

p
3

• Another option is “cyclic assignment—Process i is assigned
rows i, i+p, i+2p, etc.

• Another option is 2D contiguous block partitioning.

We could instead use dynamic assignment, where a process gets an
index, works on the row, then gets a new index, etc. Is there any
advantage to this?

What are advantages and disadvantages of these partitionings?

Static assignment of rows to processes reduces concurrency

But block assignment reduces communication, by assigning adjacent
rows to the same processor.

How many rows now need to be accessed from other processors?

So the communication-to-computation ratio is now only O().

Orchestration

Once we move on to the orchestration phase, the computation model
constrains our decisions.

Lecture 8 Architecture of Parallel Computers 51

Data-parallel model

In the code below, we assume that global declarations are used for
shared data, and that any data declared within a procedure is private.

Global data is allocated with g_malloc.

Differences from sequential program:

• for_all loops
• decomp statement
• mydiff variable, private to each process
• reduce statement

1. int n, nprocs ; /*grid size (n+2n+2) and # of processes*/
2. double **A, diff = 0;

3. main()
4. begin
5. read(n); read(nprocs); ; /*read input grid size and # of processes*/
6. A  G_MALLOC (a 2-d array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize the matrix A somehow*/
8. Solve (A); /*call the routine to solve equation*/
9. end main

10. procedure Solve(A) /*solve the equation system*/
11. double **A; /* A is an (n+2n+2) array*/
12. begin
13. int i, j, done = 0;
14. float mydiff = 0, temp;
14a. DECOMP A[BLOCK,*, nprocs];
15. while (!done) do /*outermost loop over sweeps*/
16. mydiff = 0; /*initialize maximum difference to 0 */
17. for_all i  1 to n do /*sweep over non-border points of grid*/
18. for_all j  1 to n do
19. temp = A[i,j]; /*save old value of element*/
20. A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]); /* compute average*/
22. mydiff += abs(A[i,j] - temp);
23. end for_all
24. end for_all
24a. REDUCE (mydiff, diff, ADD);
25. if (diff/(n*n) < TOL) then done = 1;
26. end while

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 52

The decomp statement has a twofold purpose.

• It specifies the assignment of iterations to processes.

 The first dimension (rows) is partitioned into nprocs contiguous
blocks. The second dimension is not partitioned at all.

 Specifying [CYCLIC, *, nprocs] would have caused a
cyclic partitioning of rows among nprocs processes.

 Specifying [*,CYCLIC, nprocs] would have caused a
cyclic partitioning of columns among nprocs processes.

 Specifying [BLOCK, BLOCK, nprocs] would have implied a
2D contiguous block partitioning.

 For all of these partitionings, tell which processing element in
a 64-PE system would compute A[33, 65]. If the grid is 1024
x 1024?

• It specifies the assignment of grid data to memories on a dis-
tributed-memory machine. (Follows the owner-computes rule.)

The mydiff variable allows local sums to be computed.

The reduce statement tells the system to add together all the mydiff
variables into the shared diff variable.

Lecture 8 Architecture of Parallel Computers 53

Shared-memory model

In this model, we
need mechanisms to
create processes and
manage them.

After we create the
processes, they
interact as shown on
the right. Sweep

Test Convergence

Processes

Solve Solve Solve Solve

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 54

What are the main differences between the serial program and this
program?

• The first process creates nprocs–1 worker processes. All n
processes execute Solve.

 All processes execute the same code.

 But all do not execute the same instructions at the same time.

• Private variables like mymin and mymax are used to control
loop bounds.

• All processors need to—

1. int n, nprocs; /*matrix dimension and number of processors to be used*/
2a. double**A, diff; /*A is global (shared) array representing the grid*/

/*diff is global (shared) maximum difference in current
sweep*
/2b. LOCKDE C(diff_lock); /*declaration of lock to enforce mutual exclusion*/

2c. BARDEC (bar1); /*barrier declaration for global synchronization between
sweeps*
/

3. main()
4. begin
5. read(n); read(nprocs); /*read input matrix size and number of processes */
6. A  - (a two-dimensional array of size n+2 by n+2 doubles);
7. initialize(A); /*initialize A in an unspecified way*/
8a. CREATE (nprocs–1, Solve, A);
8. Solve(A); /*main process becomes a worker

t */8b. WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/
9. end main
10. procedure Solve(A)
11. double**A; /*A is entire n+2-by-n+2 shared array,

as in the sequential program*/
12. begin
13. int i,j, pid , done = 0;
14. float temp, mydiff = 0; /*private variables*/
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/
15. while (!done) do /* outer loop over all diagonal elements*/
16. mydiff = diff = 0 ; /*set global diff to 0 (okay for all to do it)*/
16a. BARRIER(bar1, nprocs); /*ensure all reach here before anyone modifies diff*/
17. for i  mymin to mymax do /*for each of my rows */
18. for j  1 to n do /*for all nonborder elements in that row*/
19. temp = A[i,j];
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] +
21. A[i,j+1] + A[i+1,j]);
22. mydiff += abs(A[i,j] - temp);
23. endfor
24. e ndfor
25a. LOCK(diff_lock); /*update global diff if necessary*/
25b. diff += mydiff ;
25c. UNLOCK(diff_lock);
25d. BARRIER(bar1, nprocs); /*ensure all reach here before checking if done*/
25e. if (diff/(n*n) < TOL) then done = 1; /*check convergence; all get

same answer*/
25f. BARRIER(bar1, nprocs);
26. endwhile
27. end procedure

Lecture 8 Architecture of Parallel Computers 55

° complete an iteration before any process tests for
convergence. Why?

° test for convergence before any process starts the next
iteration. Why?

 Notice the use of barrier synchronization to achieve this.

 What could happen if the barrier at Line 16a was removed?

 What could happen if the barrier at Line 25d was removed?

 What could happen if the barrier at Line 25f was removed?

• Locks must be plsaced around updates to diff, so that no two
processors update it at once. Otherwise, inconsistent results
could ensue.

 p1 p2

 r1  diff { p1 gets 0 in its r1}

 r1  diff { p2 also gets 0}

 r1  r1+r2 { p1 sets its r1 to 1}

 r1  r1+r2 { p2 sets its r1 to 1}

 diff  r1 { p1 sets diff to 1}
 diff  r1 { p2 also sets diff to 1}

If we allow only one processor at a time to access diff, we can avoid
this race condition.

What is one performance problem with using locks?

Note that at least some processors need to access diff as a non-local
variable.

What is one technique that our shared-memory program uses to
diminish this problem of serialization?

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 56

Message-passing model

The program for the message-passing model is also similar, but
again there are several differences.

 There’s no shared address space, so we can’t declare array A
to be shared.

 Instead, each processor holds the rows of A that it is working
on.

 The subarrays are of size (n/nprocs + 2)  (n + 2).
 This allows each subarray to have a copy of the boundary rows

from neighboring processors. Why is this done?

 These ghost rows must be copied explicitly, via send and
receive operations.

 Note that send is not synchronous; that is, it doesn’t make the
process wait until a corresponding receive has been executed.

 What problem would occur if it did?

• Since the rows are copied and then not updated by the
processors they have been copied from, the boundary values
are more out-of-date than they are in the sequential version of
the program.

 This may or may not cause more sweeps to be needed for
convergence.

• The indexes used to reference variables are local indexes, not
the “real” indexes that would be used if array A were a single
shared array.

Lecture 8 Architecture of Parallel Computers 57

There are one or more typos in the if statements involving pids.
Which statement(s)? What are the error(s)?

1. int pid, n, b; /*process id, matrix dimension and number of
 processors to be used*/
2. float **myA;
3. main()
4. begin
5. read(n); read(nprocs); /*read input matrix size and number of processes*/
8a. CREATE (nprocs-1, Solve);
8b. Solve(); /*main process becomes a worker too*/
8c. WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/
9. end main

10. procedure Solve()
11. begin
13. int i,j, pid, n’ = n/nprocs, done = 0;
14. float temp, tempdiff, mydiff = 0; /*private variables*/
6. myA  malloc(a 2-d array of size [n/nprocs + 2] by n+2);
 /*my assigned rows of A*/
7. initialize(myA); /*initialize my rows of A, in an unspecified way*/

15. while (!done) do
16. mydiff = 0; /*set local diff to 0*/
16a. if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW);
16b. if (pid != nprocs-1) then
 SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW);
16c. if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-1,ROW);
16d. if (pid != nprocs-1) then
 RECEIVE(&myA[n’+1,0],n*sizeof(float), pid+1,ROW);
 /*border rows of neighbors have now been copied
 into myA[0,*] and myA[n’+1,*]*/
17. for i  1 to n’ do /*for each of my (nonghost) rows*/
18. for j  1 to n do /*for all nonborder elements in that row*/
19. temp = myA[i,j];
20. myA[i,j] = 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] +
21. myA[i,j+1] + myA[i+1,j]);
22. mydiff += abs(myA[i,j] - temp);
23. endfor
24. endfor
 /*communicate local diff values and determine if
 done; can be replaced by reduction and broadcast*/
25a. if (pid != 0) then /*process 0 holds global total diff*/
25b. SEND(mydiff,sizeof(float),0,DIFF);
25c. RECEIVE(done,sizeof(int),0,DONE);
25d. else /*pid 0 does this*/
25e. for i  1 to nprocs-1 do /*for each other process*/
25f. RECEIVE(tempdiff,sizeof(float),*,DIFF);
25g. mydiff += tempdiff; /*accumulate into total*/
25h. endfor
25i if (mydiff/(n*n) < TOL) then done = 1;
25j. for i  1 to nprocs-1 do /*for each other process*/
25k. SEND(done,sizeof(int),i,DONE);
25l. endfor
25m. endif
26. endwhile
27. end procedure

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 58

Data parallel algorithms1

 (Guy Steele): The data-parallel programming style is an approach to
organizing programs suitable for execution on massively parallel
computers.

In this lecture, we will—

• characterize the programming style,

• examine the building blocks used to construct data-parallel
programs, and

• see how to fit these building blocks together to make useful
algorithms.

All programs consist of code and data put together. If you have more
than one processor, there are various ways to organize parallelism.

• Control parallelism: Emphasis is on extracting parallelism
by orienting the program’s organization around the
parallelism in the code.

• parallelism: Emphasis is on organizing programs to
extract parallelism from the organization of the data.

With data parallelism, typically all the processors are at roughly the
same point in the program.

Control and data parallelism vs. SIMD and MIMD.

• You may write a data-parallel program for a MIMD
computer, or

• a control-parallel program which is executed on a SIMD
computer.

 Emphasis in this talk will be on styles of organizing programs. It
becomes an engineering issue whether it is appropriate to organize
the hardware to match the program.

1Video © 1991, Thinking Machines Corporation. This video is available from University Video
Communications, http://www.uvc.com.

Lecture 13 Architecture of Parallel Computers 59

The sequential programming style, typified by C and Pascal, has
building blocks like—

• scalar arithmetic operators,
• control structures like if … then … else, and
• subscripted array references.

The programmer knows essentially how much these operations cost.
E.g., addition and subtraction have similar costs; multiplication may
be more expensive.

To write data-parallel programs effectively, we need to understand
the cost of data-parallel operations.

• Elementwise operations (carried on independently by
processors; typically operations and tests).

• Conditional operations (also elementwise, but some
processors may not participate, or act in various ways).

• Replication

•

• Permutation

• Parallel prefix (scan)

An example of an elementwise operation:

Elementwise addition

C = A + B

3

6

9

1

2

3

4

1

5

5

3

8

2

0

2

1

1

2

3

1

4

2

5

7 +

Elementwise test

if (A > B)

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 60

3

6

0

1

2

0

4

1

0

5

3

0

2

0

0

1

1

0

3

1

0

2

5

0

>

The results can be used to “conditionalize” future operations:

if (A > B) C = A + B

3

6

0

1

2

0

4

1

5

5

3

8

2

0

2

1

1

0

3

1

4

2

5

0 +

The set of bits that is used to conditionalize the operations is
frequently called a condition mask or a context. Each processor can
perform different computations based on the data it contains.

Building blocks

Communications operations:

• : Get a single value out to all processors. This
operation happens so frequently that is worthwhile to
support in hardware. It is not unusual to see a hardware
bus of some kind.

• Spreading (nearest-neighbor grid). One way is to have
each row copied to its nearest neighbor.

Lecture 13 Architecture of Parallel Computers 61

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

A better way is to use a copy-scan:

• On the first step, the data is copied to the row that is
directly below.

• On the second step, data is copied from each row that
has the data to the row that is two rows below.

• On the third step, data is copied from each row to the
row that is four rows below.

 In this way, the row can be copied in logarithmic time, if we

have the necessary interconnections.

• —essentially the inverse of broadcasting.
Each processor has an element, and you are trying to
combine them in some way to produce a single result.

6 1 4 7 3 1 3 2

+

27

 Summing a vector in logarithmic time:

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 62

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7

x 0 x 2 x 4 x 6 Σ 0
1 Σ 2

3 Σ 4
5 Σ 6

7

x 0 x 2 x 4 x 6 Σ 0
1 Σ 0

3 Σ 4
5 Σ 4

7

x 0 x 2 x 4 x 6 Σ 0
1 Σ 0

3 Σ 4
5 Σ 0

7

 Most of the time during the course of this algorithm, most
processors have not been busy.

 So while it is fast, we haven’t made use of all the
processors.

 Suppose you don’t turn off processors; what do you get?
Vector sum-prefix (sum-scan).

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7

Σ 0
1 Σ 2

3 Σ 4
5 Σ 6

7

Σ 0
1 Σ 0

3 Σ 2
5 Σ 4

7

Σ 0
1 Σ 0

3 Σ 0
5 Σ 0

7

Σ 0
2 Σ 3

4 Σ 5
6 Σ 0

0

Σ 0
0

Σ 0
0

Σ 0
2 Σ 1

4 Σ 3
6

Σ 0
2 Σ 0

4 Σ 0
6

 Each processor has received the sum of what it contained,
plus all the processors preceding it.

 We have computed the sums of all prefixes—initial
segments—of the array.

 This can be called the checkbook operation; if the numbers
are a set of credits and debits, then the prefixes are the set
of running balances that should appear in your checkbook.

• . We wish to assign a different number to
each processor.

Lecture 13 Architecture of Parallel Computers 63

1 1 1 1 1 1 1 1

+

1

1 2 3 4 5 6 7 8

Broadcast

Sum-prefix

• Regular permutation.

Shift

A B C D E F G H

A B C D E F GH

 Of course, one can do shifting on two-dimensional arrays
too; you might shift it one position to the north.

 Another kind of permutation is an odd-even swap:

A B C D E F G H

B D F HA C E G

 Distance 2k swap:

A B C D E F G H

C A G ED B H F

 Some algorithms call for performing irregular permutations
on the data.

 A B C D E F G H

C E H FB A D G

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 64

 The permutation depends on the data. Here we have
performed a sort. (Real sorting algorithms have a number
of intermediate steps.)

Example: image processing

Suppose we have a rocket ship and need to figure out where it is.

Some of the operations are strictly local. We might focus in on a
particular region, and have each processor look at its values and
those of its neighbor.

This is a local operation; we shift the data back and forth and have
each processor determine whether it is on a boundary.

When we assemble this data and put it into a global object, the
communication patterns are dependent on the data; it depends on
where the object happened to be in the image.

Irregularly organized data

Most of our operations so far were on arrays, regularly organized
data.

We may also have operations where the data are connected by
pointers.

In this diagram, imagine the processors as being in completely
different parts of the machine, known to each other only by an
address.

 doubling:

I originally thought that nothing could be more essentially sequential
than processing a linked list. You just can’t find the third one without
going through the second one. But I forgot that there is processing
power at each node.

The most important technique is pointer doubling. This is the pointer
analogue of the spreading operation we looked at earlier to make a
copy of a vector into a matrix in a logarithmic number of steps.

Lecture 13 Architecture of Parallel Computers 65

In the first step, each processor makes a copy of the pointer it has to
its neighbor.

In the rest of the steps, each processor looks at the processor it is
pointing to with its extra pointer, and gets a copy of its pointer.

In the first step, each processor has a pointer to the next processor.
But in the next step, each processor has a pointer to the processor
two steps away in the linked list.

In the next step, each processor has a pointer to the pointer four
processors away (except that if you fall off the end of the chain, you
don’t update the pointer).

Eventually, in a logarithmic number of steps, each processor has a
pointer to the end of the chain.

How can this be used? In partial sums of a linked list.

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7

At the first step, each processor takes the pointer to its neighbor.

At the next step, each processor takes the value that it holds, and
adds it into the value in the place pointed to:

Σ 0
1 Σ 2

3 Σ 4
5 Σ 6

7 Σ 0
2 Σ 3

4 Σ 5
6 Σ 0

0

Now we do this again:

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 66

Σ 0
1 Σ 0

3 Σ 2
5 Σ 4

7 Σ 0
0 Σ 0

2 Σ 1
4 Σ 3

6

And after the third step, you will find that each processor has gotten
the sum of its own number plus all the preceding ones in the list.

Σ 0
1 Σ 0

3 Σ 0
5 Σ 0

7 Σ 0
0 Σ 0

2 Σ 0
4 Σ 0

6

Speed vs. efficiency: In sequential programming, these terms are
considered to be synonymous. But this coincidence of terms comes
about only because you have a single processor.

In the parallel case, you may be able to get it to go fast by doing extra
work.

Let’s take a look at the serial vs. parallel algorithm for summing an
array.

 -Reduction

 Serial Parallel

Processors 1 N

Time steps N–1 log N

Additions N–1 N–1

Cost N–1 N log N

Efficiency 1
1

log N

 Sum – Prefix

 Serial Parallel

Processors 1 n

Time steps n–1 log n

Additions n–1 n (log n–1)

Lecture 13 Architecture of Parallel Computers 67

Cost n–1 n log n

Efficiency 1
log n–1

log n

The serial version of sum–prefix is similar to the serial version of
sum–reduction, but you save the partial sums. You don’t need to do
any more additions, though.

In the parallel version, the number of additions is much greater. You
use n processors, and commit log n time steps, and nearly all of them
were busy.

As n gets large, the efficiency is very close to 1. So this is a very
efficient algorithm. But in some sense, the efficiency is bogus; we’ve
kept the processors busy doing more work than they had to do. Only
n–1 additions are really required to compute sum–prefix. But n(log
n–1) additions are required to do it fast.

Thus, the business of measuring the speed and efficiency of a
parallel algorithm is tricky. The measures I used are a bit naïve. We
need to develop better measures.

Exercise: Submit your answers here.

Calculate the speedup of summing a vector using copy-scan (turning
off the processors that are not in use).

 How long does it take to sum the vector serially?

 How long does it take to sum it using copy-scan?

 What is the speedup?

What is the efficiency (speedup ÷ # of processors) of summing a
vector with copy-scan?

In the parallel version of summing an array via sum-prefix, a “bogus”
efficiency is mentioned. What would be the “non-bogus” efficiency of
the same algorithm?

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 68

Putting the building blocks together

Let’s consider matrix multiply.

One way of doing this with a brute-force approach is to use n3
processors.

source2

source1
result

n

n

n

1. Replicate. The first step is to
make copies of the first source
array, using a spread operation.

2. Replicate. Then we will do the
same thing with the second
source, spreading those down the
cube.

So far, we have used O(log n)
time.

3. Elementwise multiply. n3
operations are performed, one by
each processor.

4. Perform a parallel sum operation,
using the doubling-reduction method.

sum

Lecture 13 Architecture of Parallel Computers 69

We have multiplied two matrices in
O(log n) time, but at the cost of using n3 processors.

Brute force: n3 processors O(log n) time

Also, if we wanted to add the sum to one of the matrices, it’s in the
wrong place, and we would incur an additional cost to move it.

Cannon’s method

There’s another method that only requires n2 processors. We take
the two source arrays and put them in the same n2 processors. The
result will also show up in the same n2 processors.

We will pre- the two source arrays.

• The first array has its rows skewed by different amounts.

skew

• The columns of the second array are skewed.

skew

The two arrays are overlaid, and they
then look like this:

This is a systolic algorithm; it rotates
both of the source matrices at the same
time.

• The first source matrix is rotated horizontally.
• The second source matrix is rotated vertically.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 70

At the first time step, the 2nd element of the first row and the 2nd
element of the first column meet in the upper left corner. They are
then multiplied and accumulated.

At the second time step, the 3rd element of the first row and the 3rd
element of the first column meet in the upper left corner. They are
then multiplied and accumulated.

At the third time step, the 4th element of the first row and the 4th
element of the first column meet in the upper left corner. They are
then multiplied and accumulated.

At the fourth time step, the 1st element of the first row and the 1st
element of the first column meet in the upper left corner. They are
then multiplied and accumulated.

The same thing is going on at all the other points of the matrix.

The serves to cause the correct elements of each row
and column to meet at the right time.

Cannon’s method: n2 processors O(n) time

An additional benefit is that the matrix ends up in the right place.

Labeling regions in an image

Let’s consider a really big example.

Instead of the rocket ship earlier in the lecture, we’ll consider a
smaller region. (This is one of the problems in talking about data-
parallel algorithms. They’re useful for really large amounts of data,
but it’s difficult to show that on the screen.)

Lecture 13 Architecture of Parallel Computers 71

We have a number of regions in
this image. There’s a large
central “green” region, and a “red-
orange” region in the upper right-
hand corner. Some disjoint
regions have the same color.

We would like to compute a result
in which each region gets
assigned a distinct number.

We don’t care which number gets
assigned, as long as the numbers are distinct (even for regions of the
same color.

0 0 2 2 2 5 5 5

8 0 0 2 2 2 2 5

8 8 0 19 2 2 2 23

8 8 19 19 19 19 23 23

8 19 19 19 19 19 23 23

8 19 19 19 19 23 23 23

8 49 49 19 19 23 23 23

49 49 49 49 60 60 60 60

For example, here the
central green region has
had all its pixels assigned
the value 19.

The squiggly region in the
upper left corner has
received 0 in all its pixels.

The region in the upper
right, even though the
same color as the central
green region, has
received a different value.

Let’s see how all the building blocks we have discussed can fit
together to make an interesting algorithm.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 72

First, let’s assign each
processor a different number.

Here I’ve assigned the
numbers sequentially across
the rows, but any distinct
numbering would do.

We’ve seen how the enumera-
tion technique can do this in a
logarithmic number of time
steps.

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63

Next, we have each of the
pixels examine the values
of its eight neighbors.

This is easily accomplished
using regular —
namely, shifts of the matrix.

We shift it up, down, left,
right, to the northeast,
northwest, southeast, and
southwest.

This is enough for each processor to do elementwise computation
and decide whether it is on the border.

 (There are messy details, but we won’t discuss them here, since they
have little to do with parallelism.)

The next computation will be carried out only by processors that are
on the borders (an example of conditional operation).

Lecture 13 Architecture of Parallel Computers 73

We have each of the processors
again consider the pixel values
that came from its neighbors,
and

inquire again, using shifting, if
each of its neighbors are border
elements.

This is enough information to
figure out which of your
neighbors are border elements in
the same region, so you can
construct pointers to them.

0 1 2 4 5 6

8 9 10 11 13 14 15

17 18 19 20 21 22 23

25 26 28 29 30

32 33 37 38

40 41 42 44 45

48 49 50 51 52 53 54 55

56 59 60 61 62 63

Now we have stitched
together the borders in a
linked list.

We now use the pointer-
doubling algorithm. Each
pixel on the borders
considers the number that
it was assigned in the
enumeration step.

We use the pointer-
doubling algorithm to do a
reduction step using the
min operation.

0 0 2 2 5 5

8 0 0 2 2 2 2 5

8 0 19 2 2 2 23

8 19 19 19 23

8 19 19 23

8 19 19 19 23

8 49 49 19 19 23 23 23

49 49 60 60 60 60

Each linked list performs
pointer-doubling around
that list, and determines
which number is the
smallest in the list.

Then another pointer-
doubling algorithm makes
copies of that minimum all
around the list.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 74

Finally, we can use operation, not on linked lists, but by
operating on the columns (or the rows) to copy the processor labels
from the borders to the rows.

Other items, particularly those
on the edge, may need the
numbers propagated up
instead of down. So you do a
scan in both directions.

The operation used is a non-
commutative operation that
copies the old number from
the neighbor, unless it comes
across a new number.

0 0 2 2 2 5 5 5

8 0 0 2 2 2 2 5

8 8 0 19 2 2 2 23

8 8 19 19 19 19 23 23

8 19 19 19 19 19 23 23

8 19 19 19 19 23 23 23

8 49 49 19 19 23 23 23

49 49 49 49 60 60 60 60

scan

This is known as Lim’s algorithm.

 Region labeling: O(n2) processors. O(log n) time

 (Each of the steps was either constant time or O(log n) time.)

Data-parallel programming makes it easy to organize operations on
large quantities of data in massively parallel computers.

It differs from sequential programming in that its emphasis is on
operations on entire sets of data instead of one element at a time.

You typically find fewer loops, and fewer array subscripts.

On the other hand, data-parallel programs are like sequential
programs, in that they have a single thread of control.

In order to write good data-parallel programs, we must become
familiar with the necessary building blocks for the construction of
data-parallel algorithms.

With one processor per element, there are a lot of interesting
operations which can be performed in constant time, and other
operations which take logarithmic time, or perhaps a linear amount of
time.

Lecture 13 Architecture of Parallel Computers 75

This also depends on the connections between the processors. If the
hardware doesn’t support sufficient connectivity among the
processors, a communication operation may take more time than
would otherwise be required.

Once you become familiar with the building blocks, writing a data-
parallel program is just as easy (and just as hard) as writing a
sequential program. And, with suitable hardware, your programs may
run much faster.

Exercise: Run through Lim’s algorithm on the grid given here.

Questions and answers: [not shown during class] Question: (Bert
Halstead): Do you ever get into problems when you have highly
data-dependent computations, and it’s hard to keep more than a
small fraction of the processors doing the same operation at the
same time?

Answer: Yes. That’s one reason for making the distinction between
the data-parallel style and hardware. The best way to
design a system to give you the most flexibility without making it
overly difficult to control is, I think, still an open research question.

Question (Franklin Turback): Your algorithms seem to be based on
the assumption that you actually have enough processors to match
the size of your problem. If you have more data than processors, it
seems that the logarithmic time growth is no longer justified.

Answer: There’s no such thing as a free lunch. Making the problem
bigger makes it run slower. If you have a much larger problem that
won’t fit, you’re going to have to buy a larger computer.

Question: How about portability of programs to different machines?

Answer: Right now it’s very difficult, because so far, we haven’t
agreed on standards for the right building blocks to support. Some
architectures support some building blocks but not others. This is
why you end up with non-portabilities of efficiencies of running times.

Question: For dealing with large sparse matrices, there are methods
that we use to reduce complexity. If this is true, how do you justify
the overhead cost of parallel processing?

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 76

Answer: Yes, that is true. It would not be appropriate to use that kind
of algorithm on a sparse matrix, just as you don’t use the usual
sequential triply-nested loop.

 processing on a data-parallel computer calls for
very different approaches. They typically call for the irregular
communication and permutation techniques that I illustrated.

Question: What about non-linear programming and algorithms like
branch-and-bound?

Answer: It is sometimes possible to use data-parallel algorithms to
do seemingly unstructured searches, as on a game tree, by
maintaining a work queue, like you might do in a more control-
parallel, and at every step, taking a large number of task items off the
queue by using an enumeration step and using the results of that
enumeration to assign them to the processors.

This may depend on whether the rest of the work to be done is
sufficiently similar. If it’s not, then control parallelism may be more
appropriate.

Question: With the current software expertise in 4GLs for sequential
machines, do you think that developing data-parallel programming
languages will end up at least at 4GL level?

Answer: I think we are now at the point where we know how to
design data-parallel languages at about the level of expressiveness
as C, Fortran, and possibly Lisp. I think it will take awhile before we
can raise our level of understanding to the level we need to design
4GLs.

Lecture 10 Architecture of Parallel Computers 77

Parallel access to linked data structures

[Solihin Ch. 4] Answer the questions below.

Name some linked data structures. Linked lists, trees, graphs, hash
tables.

What operations can be performed on all of these structures?
Insertion, deletion, search.

Why is it hard to parallelize these operations? Because pointer-
chasing involves frequent loop-carried dependences.

Explain how the following code illustrates such a dependence.

void addValue(pIntList pList, int key, int x) {
 pIntListNode p = pList->head;
 while (p != NULL) {
 if (p->key == key)
 S1: p->data = p->data + x;
 S2: p = p->next;
 }
}

In the notation introduced in Lecture 9, how would the dependence
be written?

S1[i] T S1[i+1], S2[i] T S2[i+1], except that there is
no i in the program.

If we just look at the loops in an “LDS” program, we won’t find any
parallelism to be exploited.

So, where can we find the opportunity to execute anything in parallel?
The “algorithm level”—paralellism between the operations that are
performed on the LDS.

Conceptually, we can allow several operations to be performed in
parallel. What kind of operations? Insertion, deletion, search, etc.

But how do we decide which operations can be performed in parallel?

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 78

Correctness of parallel LDS operations

Serializability: A parallel execution of a group of operations (or
primitives) is said to be serializable if there is some sequence of
operations (or primitives) that produce an identical result.

Suppose a node insertion i1 and a node deletion d1 are performed in
parallel. The outcome must be equivalent to either

 i1 followed by d1, or
 d1 followed by i1.

Conflict between two insertions

Let’s look at
the simple
case of a
singly-linked
list.

Suppose
two items
are inserted
in parallel:
insert both 4
and 5.

Serializable
outcomes:

insert 4,
then insert 5

or insert 5,
then insert 4

In any case,
both nodes
4 and 5
must be in
the list at the
end of
execution

Lecture 10 Architecture of Parallel Computers 79

What could happen if the operations are not parallelized correctly?
Node 4 could be lost, or node 5 could be lost.

Conflict between an insertion and a deletion

Serializable
outcome:

insert 4, then
delete 5, or

delete 5,
then insert 4

in both
cases, at the
end of
execution,
node 4 is in
the list, but
node 5 is not
in the list

In the case shown, node 4 is lost. What would be a sequence that
produces another incorrect result? What would happen with this
sequence? (You may use this worksheet.)

Conflict between an insertion and a search

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 80

Suppose we
attempt

insert 5, then
search 6

or, search 6,
then insert 5

in both
cases, at the
end of
execution,

 5 must be
in the list,
and

 6 must be
found

Depending

on when the insertion code is executed,

 node 6 will be found, or

 node 6 may not be found, and an uninitialized link may be
followed.

Conflict between a deletion and a search

 Deletion and search

o delete 5, then search for 5
o search for 5, then delete 5

 Possible outcomes

o Node 5 may be found or not found
o Node 5 is deleted from the list

Lecture 10 Architecture of Parallel Computers 81

What, if anything, is the problem with these outcomes?
Nothing; the operations are serializable.

Main Observations

 Parallel execution of two operations that affect a common node,
in which at least one operation involves writing to the node, can
produce conflicts that lead to non-serializable outcome.

 Under some circumstances, a serializable outcome may still be
achieved, despite the conflicts mentioned above.

 Conflicts can also occur between LDS operations and memory-
management functions such as allocation and deallocation.

Parallelization strategies

 Parallelization among readers

o Very simple
o Works well if structure is modified infrequently

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 82

 Global lock approach

o Relatively simple
o Parallel traversal, followed by sequential list modifications

 Fine-grain lock approach

o A lock is associated with each node.
o Each operation locks only nodes that need to be

accessed exclusively.
o Complex: Deadlock can occur; memory allocation and

deallocation become more complex

Parallelization among readers

 Basic idea

o (Read-only) operations that do not modify the list can
execute in parallel.

o (Write) operations that modify the list execute sequentially

 How to enforce

o A read-only operation acquires a read lock
o A write operation acquires a write lock

 Construct a lock-compatibility table

Already-granted
lock

Read lock
requested

Write lock
requested

Read lock Yes No

Write lock No No

Example

IntListNode_Search(int x)
{
 acq_read_lock();
 …
 …
 …
 rel_read_lock();
}

IntListNode_Insert(node *p)
{
 acq_write_lock();
 …
 …
 …
 rel_write_lock();
}

Lecture 10 Architecture of Parallel Computers 83

Global-lock approach

 Each operation logically has two steps

o Traversal

 Node insertion: Find the correct location for the node
 Node deletion: Find the node to delete
 Node search: Find the sought-for node

o List modification

 Basic idea: perform the traversal in parallel, but modify the list
in a critical section, i.e., modify the list between the time that a
write lock is acquired and when it is released (that’s what a c.s.
is).

 Pitfall
o The list may have changed by the time the write-lock is

acquired,
o so the assumptions must be re-validated.

Example

IntListNode_Insert(node *p)
{
 …
 /* perform traversal */
 …
 acq_write_lock();
 /* then check validity:
 nodes still there?
 link still valid? */
 /* if not valid, repeat traversal */
 /* if valid, modify list */
 …
 rel_write_lock();
}

Fine-grain locking approach

 Associate each node with a lock (read, write).
 Each operation locks only needed nodes.
 (Read and write) operations execute in parallel except when

they conflict on some nodes. Fill in the blanks below.
o Nodes that will be modified are write-locked.

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 84

o Nodes that are read and must remain unchanged are
read-locked.

 Pitfall: Deadlock becomes possible.
o Suppose one operation locks node 1 and then needs to

lock node 2, while another operation locks node 2 and
then needs to lock node 1.

o Then neither operation can complete before the other
operation frees the lock it is holding.

 Deadlocks can be prevented by imposing a global lock-
acquisition order.

Example

void insert(pIntList pList, int x){
 int succeed;
 … /* traversal code to find where to insert */

 /* insert the node at head or between prev & p */
 succeed = 0;
 do {
 acq_write_lock(prev);
 acq_read_lock(p);
 if (prev->next != p || prev->deleted || p->deleted)
 {
 rel_write_lock(prev);
 rel_read_lock(p);
 … /* repeat traversal */
 }
 else
 succeed = 1;
 } while (!succeed);

 /* prev and p are now valid, so insert node */
 newNode->next = p;
 if (prev != NULL)
 prev->next = newNode;
 else
 pList->head = newNode;
 rel_write_lock(prev);
 rel_read_lock(p);

Lecture 10 Architecture of Parallel Computers 85

}

Questions

What do the tests prev->deleted and p->deleted mean? They
ask whether the node has been deleted (by checking its deleted
field); nodes are marked deleted rather than deallocated.

Why is garbage collection used, rather than explicit deletion?
Because nodes may be deleted only when they are not involved in
any operation. This would require keeping reference counts on all
the nodes, which is too expensive.

The delete operation is similar; code that is the same is shown in
green.

void delete(pIntList pList, int x){
 int succeed;
 … /* traversal code to find node to delete */

 /* node has been found; perform the deletion */
 succeed = 0;
 do {
 acq_write_lock(prev);
 acq_write_lock(p);
 if (prev->next != p || prev->deleted || p->deleted)
 {
 rel_write_lock(prev);
 rel_write_lock(p);
 … /* repeat traversal; return if not found */
 }
 else
 succeed = 1;
 } while (!succeed);

 /* prev and p are now valid, so delete node */
 if (prev == NULL) { /* delete head node */
 acq_write_lock(pList);
 pList->head = p->next;
 rel_write_lock(pList);
 }
 else /* delete non-head node */

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 86

 prev->next = p->next;
 p->deleted = 1; /*don’t deallocate; mark deleted*/
 rel_write_lock(prev);
 rel_write_lock(p);
}

