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CSC/ECE 506: Architecture of Parallel Computers

Learning Objectives

1. Understand the problem of race conditions in 
concurrent systems,

2. Learn how to decompose a program for parallel 
execution,

3. Be able to write simple parallel programs in the 
important programming models,

4. Understand the operation of common cache-
coherence protocols, both bus-based and network-
based, and

5. Learn about common memory-consistency models, 
and appreciate the advantages and disadvantages 
of each.
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“Attendance” requirement
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• You are required to “attend” 20 of the 26 classes.

• 16 of these must be in the classroom.

• “Attend”  Respond intelligently to  ½ of Google forms

• Each one not passed  –0.5% on semester average.

• You are required to pass 24 of 25 daily quizzes, plus the 
Syllabus Quiz. First one due Wednesday!

• “Passed”  score of  80%

• Each one not passed  –0.5% on semester average.

• You are required to team with 3 students on homework.

• Each teammate you are lacking
 –0.5% on semester average
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Playposit quizzes

• Three lectures (9, 15, 23) will be videos to watch.

• They have embedded quizzes.

– Do the quizzes to get attendance credit.
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Zoom session

http://go.ncsu.edu/506zoom
If you join the Zoom session from the 
classroom, be sure to let me know.
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Grading
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Homework

• 4 programs

• 3 problem sets*

• 1 peer-reviewed madeup problem
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*One of the problem sets will be dual submission.
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Tests

• Two 120-minute midterm tests (10%, 15% 
of grade)

• 150-minute final (24% of grade)

• Open notes

• No books, computers or communication 
devices
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Extra Credit

• All activities for which extra credit is given 
must help other students to learn the course 
material.

• Examples
– Making outstanding contributions to answering other

students' questions on Piazza

– Contributing useful practice problems via Peerwise

– Doing extra peer reviews of madeup problems submitted to 
Expertiza

– Suggesting Web or print resources that will help other students 
write useful madeup problems
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Outline for Lecture 1

 Architectural trends

 Types of parallelism

 Flynn taxonomy

 Scope of CSC/ECE 506
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Key Points

• More and more components can be integrated on a single 
chip

• Speed of integration tracks Moore’s law, doubling every 18–
24 months. 

• Exercise: Look up how the number of transistors per chip has 
changed, esp. since 2006.  Submit here.

• Until recently, performance tracked speed of integration

• At the architectural level, two techniques facilitated this:
– Cache memory
– Instruction-level parallelism

• Performance gain from uniprocessor system was high 
enough that multiprocessor systems were not viable for most 
uses.
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Illustration

• 100-processor system with perfect speedup

• Compared to a single processor system
– Year 1: 100x faster

– Year 2: 62.5x faster

– Year 3: 39x faster

– …

– Year 10: 0.9x faster

• Single-processor performance catches up in just a few 
years!

• Even worse
– It takes longer to develop a multiprocessor system

– Low volume means prices must be very high

– High prices delay adoption

– Perfect speedup is unattainable
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How did uniprocessor performance grow so fast?

• ≈ half from circuit improvement (smaller 
transistors, faster clock, etc.)

• ≈ half from architecture/organization:

• Instruction-level parallelism (ILP)
– Pipelining: RISC, CISC with RISC back-end

– Superscalar

– Out-of-order execution

• Memory hierarchy (caches)
– Exploit spatial and temporal locality

– Multiple cache levels

CSC/ECE 506: Architecture of Parallel Computers
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But uniprocessor perf. growth has stalled

 Source of performance growth had been ILP
 Parallel execution of independent instructions from a 

single thread

 But ILP improvement has slowed abruptly
 Memory wall: Processor speed grows at 55%/year, 

memory speed grows at 7% per year
 ILP wall: achieving higher ILP requires quadratically 

increasing complexity (and power)

 Power efficiency
 Thermal packaging limit vs. cost
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• Instruction level (cf. ECE 563)

– Pipelining

Types of parallelism

A (a load)

B

C

IF ID MEMEX WB

IF ID MEMEX WB

IF ID MEMEX WB
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Types of parallelism, cont.

• Superscalar/VLIW

• Original:

• Schedule as:

+ Moderate degree of parallelism

– Requires fast communication (register level)

LD    F0, 34(R2)

ADDD  F4, F0, F2

LD    F7, 45(R3)

ADDD  F8, F7, F6

LD    F0, 34(R2) | LD    F7, 45(R3)

ADDD  F4, F0, F2 | ADDD  F8, F0, F6
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21

Why ILP is slowing

• Number of pipeline stages is already deep (≈ 20–30 
stages)
– But critical dependence loops do not change

– Memory latency requires more clock cycles to satisfy

• Branch-prediction accuracy is already > 90%
– Hard to improve it even more

• Cache size
– Effective, but also shows diminishing returns

– In general, size must be doubled to reduce miss rate by half.
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Current trends: multicore and manycore

IBM CellAMD 
Barcelona

Intel 
Clovertown

Aspect

8+144# cores

3.2 GHz2.3 GHz2.66 GHzClock 
frequency

2-issue SIMDOOO 
Superscalar

OOO 
Superscalar

Core type

256KB local 
store

512KB L2 
(private), 
2MB L3 (sh’d)

2x4MB L2Caches

100 watts95 watts120 wattsChip power

Exercise: Browse the Web (or the textbook ) for information on more 
recent processors, and for each processor, fill out this form. (You can view
the submissions.)

CSC/ECE 506: Architecture of Parallel Computers
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Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– SIMD (vector architecture)

– MIMD
• Shared memory machines (SMP and DSM)

• Clusters

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers
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Loop-level parallelism

• Sometimes each iteration can be performed 
independently.

• Sometimes iterations cannot be performed independently 
 no loop-level parallelism.

+ Very high parallelism > 1K
+ Often easy to achieve load balance
– Some loops are not parallel
– Some apps do not have many loops

for (i=0; i<8; i++)
a[i] = b[i] + c[i];

for (i=0; i<8; i++)
a[i] = b[i] + a[i-1];
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Task-level parallelism

• Arbitrary code segments in a single program

• Across loops: 

• Subroutines: 

• Threads: e.g., editor: GUI, printing, parsing

+ Larger granularity  low overheads, communication

– Low degree of parallelism

– Hard to balance

…
for (i=0; i<n; i++)   

sum = sum + a[i];
for (i=0; i<n; i++)

prod = prod * a[i];
…

Cost = getCost();
A = computeSum();
B = A + Cost;
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Program-level parallelism

• Various independent programs execute together

• gmake: 
– gcc –c code1.c // assign to proc1

– gcc –c code2.c // assign to proc2

– gcc –c main.c // assign to proc3

– gcc main.o code1.o code2.o

+ No communication

– Hard to balance

– Few opportunities

CSC/ECE 506: Architecture of Parallel Computers
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Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– SIMD (vector architecture)

– MIMD
• Shared-memory machines (SMP and DSM)

• Clusters

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers

Taxonomy of parallel computers

The Flynn taxonomy

• Single or multiple instruction streams.

• Single or multiple data streams.

• 1. SISD machine
– Only one instruction fetch stream

– Some not-too-ancient laptops or desktops

Control 
unit

Instruction

stream

Data

stream
ALU
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SIMD

• Examples: Vector processors, SIMD extensions (MMX), 
GPUs

• A single instruction operates on multiple data items. 

 

Control 
unit 

Instruction 
stream 

ALU 2 

ALU 1 

ALU 
  

n 

Data 
stream 

1 

Data 
stream 

2 

Data 
stream 

  
n 

SISD: 
for (i=0; i<8; i++)

a[i] = b[i] + c[i];

SIMD: 
a = b + c;  // vector addition
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MISD

• Example: CMU Warp

• Systolic arrays  

Control 
unit 2 

ALU 2 

ALU 1 

ALU 
  

n 

Instruction 
stream 1 

stream 2 

stream 
  

n 

Data 
stream 

Instruction 

Instruction 

Control 
unit 1 

Control 
unit    n 
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Systolic arrays (contd.)

– Practical realizations (e.g. iWARP) use quite general processors
• Enable variety of algorithms on same hardware

– But dedicated interconnect channels
• Data transfer directly from register to register across channel

– Specialized, and same problems as SIMD
• General-purpose systems work well for same algorithms (locality etc.)

y(i) = w1 ´ x(i) + w2 ´ x(i + 1) + w3 ´ x(i + 2) + w4 ´ x(i + 3)

x8

y3 y2 y1

x7
x6

x5
x4

x3

w4

x2

x

w

x1

w3 w2 w1

xin

yin

xout

yout

xout = x

yout = yin + w ´ xin
x = xin

Example: Systolic array for 1-D convolution
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MIMD

• Independent processors connected together to 
form a multiprocessor system.

• Physical organization
– Determines which memory hierarchy level is shared

• Programming abstraction
– Shared Memory:

• on a chip: Chip Multiprocessor (CMP)

• Interconnected by a bus: Symmetric multiprocessors (SMP)

• Point-to-point interconnection: Distributed Shared Memory 
(DSM)

– Distributed Memory: 
• Clusters, Grid

CSC/ECE 506: Architecture of Parallel Computers
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MIMD Physical Organization

P

caches

M

P
Shared-cache architecture: 
- CMP (or Simultaneous Multi-Threading)
- e.g.: Pentium 4 chip, IBM Power4 chip, Sun 
Niagara, Pentium D, etc.

- Implies shared-memory hardware

…

P

caches

M

P

…caches

Network

UMA (Uniform Memory Access) 
Shared Memory : 
- Pentium Pro Quad, Sun Enterprise, 

etc.
- What interconnection network? 

- Bus
- Multistage
- Crossbar 
- etc.

- Implies shared-memory hardware
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MIMD Physical Organization (2)

P

caches

M …

Network

P

caches

M

NUMA (Non-Uniform Memory Access) 
Shared Memory : 
- SGI Origin, Altix, IBM p690, 
AMD Hammer-based system

- What interconnection network? 
- Crossbar 
- Mesh
- Hypercube
- etc.
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Scope of CSC/ECE 506

• Parallelism
– Loop-level and task-level parallelism

• Flynn taxonomy
– MIMD

• Shared memory machines (SMP and DSM)

• Programming Model
– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers
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Programming models: shared memory

• Shared Memory / Shared Address Space:
– Each processor can see the entire memory

– Programming model = thread programming in 
uniprocessor systems 

 
P P P … 

Shared M 

31

32

33

34

35

36



2/10/2024

7

CSC/ECE 506: Architecture of Parallel Computers

37

Programming models: message-passing

• Distributed Memory / Message Passing / Multiple 
Address Space:
– A processor can directly access only its local memory.

– All communication happens by explicit messages.

P

M

P

M

P

M

P

M
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Programming models: data parallel

• Programming model 
– Operations performed in parallel on each element of 

data structure
– Logically single thread of control, performs sequential 

or parallel steps
– Conceptually, a processor associated with each data 

element 
 

Control 
unit 

Instruction 
stream 

ALU 2 

ALU 1 

ALU 
  

n 

Data 
stream 

1 

Data 
stream 

2 

Data 
stream 

  
n 
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Data parallel (cont.)

• Architectural model
– Array of many simple, cheap processing elements

(PEs) each with little memory
• Processing elements don’t sequence through instructions

– PEs are attached to a control processor that issues 
instructions

– Specialized and general communication, cheap global 
synchronization

• Original motivation
– Matches simple differential equation solvers
– Centralize high cost of instruction fetch/sequencing

39
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Top 500 supercomputers

• http://www.top500.org

• Let’s look at the Earth Simulator, #1 in 2004 

• Hardware: 
– 5,120 (640 8-way nodes) 500 MHz NEC CPUs 

– 8 GFLOPS per CPU (41 TFLOPS total) 
• 30s TFLOPS sustained performance!

– 10 TB total memory

• Now (Nov. 2023)
– Frontier, at Oak Ridge National Laboratory, is #1

– 8.7 million cores

– 1194 PFLOP/s max performance (Rmax)

– 1680 PFLOP/s peak performance (Rpeak)

CSC/ECE 506: Architecture of Parallel Computers

Exploring the Top 500 list …

• Lists > Top500 > November 2023 > The list
– See a list of the top systems

• Statistics > List Statistics > Vendors
– Lenovo is top vendor, more than double HPE

• Statistics > List Statistics > Architecture
– Clusters are overwhelmingly dominant

• Statistics > Developm’t over Time > Countries

– China comes from nowhere to lead in # of 
systems

– But US still leads in performance share

41
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Exercise

• Go to http://www.top500.org and look at the Lists and 
Statistics menus in the top menu bar.  

• From the Statistics dropdown, 
– choose either List Statistics or Development over time,

– then select one of the statistics, e.g., Vendors, Processor 
Architecture, and

– examine what kind of systems are prevalent.  Then do the same 
for earlier lists, and report on the trend.

• You can go all the way back to the first list from 1993.

• Submit your results here. 
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Three parallel-programming models 

• Shared-memory programming is like using a “bulletin board” 
where you can communicate with colleagues. 

• Message-passing is like communicating via e-mail or telephone 
calls.  There is a well defined event when a message is sent or 
received.   

• Data-parallel programming is a “regimented” form of 
cooperation.  Many processors perform an action separately on 
different sets of data, then exchange information globally before 
continuing en masse. 

User-level communication primitives are provided to realize the 
programming model 

• There is a mapping between language primitives of the 
programming model and these primitives 

These primitives are supported directly by hardware, or via OS, or via 
user software. 

In the early days, the kind of programming model that could be used 
was closely tied to the architecture. 

Today— 

• Compilers and software play important roles as bridges 
• Technology trends exert a strong influence 

The result is convergence in organizational structure, and relatively 
simple, general-purpose communication primitives. 

A shared address space 

In the shared-memory model, processes can access the same 
memory locations. 

Communication occurs implicitly as result of loads and stores 

This is convenient. 

© 2024 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2024 2 

• Wide range of granularities supported. 

• Similar programming model to time-sharing on uniprocessors, 
except that processes run on different processors 

• Wide range of scale: few to hundreds of processors 

Good throughput on multiprogrammed workloads. 

This is popularly known as the shared memory model, even though 
memory may be physically distributed among processors. 

The shared-memory model 

A process is a virtual address space plus one or more threads of 
control. 

Portions of the address spaces of tasks are shared. 

 

 

 

 

 

 

 

 

 

What does the private region of the virtual address space usually 
contain?  Stack and any private data. 

Conventional memory operations can be used for communication. 

Special atomic operations are used for synchronization. 

P 1
P 2 

P n 

P 
0 

Load 

P 
2 

Virtual address spaces for a 
collection of processes com-
municating via shared addresses 

Machine 
physical address 

Shared portion 
of address 
space 

Private portion 
of address space 

Common physical 
addresses 

Store 

private 

P 
1 private 

P 
0 private 

P 
n private 
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The interconnection structure 

The interconnect in a shared-memory 
multiprocessor can take several forms. 

It may be a crossbar switch. 

Each processor has a direct connection 
to each memory and I/O controller. 

Bandwidth scales with the number of 
processors. 

P

P

C

C

I/O

I/O

M MM M
 

Unfortunately, cost scales with the square of the # of processors. 
 

This is sometimes called the “mainframe approach.” 

At the other end of the spectrum is a shared-bus architecture. 

PP

C

I/O

M MC

I/O

$ $

 

All processors, memories, and I/O controllers are connected to the 
bus.  Cost scales linearly with the number of processors. 

Such a multiprocessor is called a symmetric multiprocessor (SMP).   

What are some advantages and disadvantages of organizing a 
multiprocessor this way?  List them here. 

•  
•  
•  

A compromise between these two organizations is a multistage 
interconnection network. 
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The processors are on one 
side, and the memories and 
controllers are on the other. 

Each memory reference has 
to traverse the stages of the 
network. 

Why is this called a 
compromise between the 
other two strategies? 

0

1

2

3

4

5

6

7

0

2

1

3

4

6

5

7

0

4

1

5

2

6

3

7

0

1

2

3

4

5

6

7

Stage 0 Stage 1 Stage 2  

Because it allows more parallel transactions than a shared bus, but 
there’s still a chance of two transactions conflicting. 

For small configurations, however, a shared bus is quite viable. 

Message passing 

In a message-passing architecture, a complete computer, including 
the I/O, is used as a building block. 

Communication is via explicit I/O operations, instead of loads and 
stores. 

• A program can directly access only its private address space (in 
local memory). 

• It communicates via explicit messages (send and receive). 

It is like a network of workstations (clusters), but more tightly 
integrated. 

Easier to build than a scalable shared-memory machine. 

Send-receive primitives 
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The programming model is further removed from basic hardware 
operations. 

Library or OS intervention is required to do communication. 

• send specifies a buffer to be transmitted, and the receiving 
process. 

• receive specifies sending process, and a storage area to 
receive into. 

• A memory-to-memory copy is performed, from the address 
space of one process to the address space of the other. 

• There are several possible variants, including whether send 
completes— 

when the receive has been executed, 

when the send buffer is available for reuse, or 

when the message has been sent. 

• Similarly, a receive can wait for a matching send to execute, or 
simply fail if one has not occurred. 

There are many overheads: copying, buffer management, protection.  
Let’s describe each of these.  Submit your descriptions here. 

• Why is there an overhead to copying, compared to a share-
memory machine?   
 

Local 
process 
address 
space 

Local 
process 
address 
space 

Address X 

Address Y 

Process P Process Q 

send(X, Q) 

receive(Y, P) 

match! 
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• Describe the overhead of buffer management.   
 
 

• What is the overhead for protection?   
 
 
 

Here’s an example from the textbook of the difference between 
shared address-space and message-passing programming. 

A shared-memory system uses the thread model: 
 
int a, b, signal; 
… 
void dosum(<args>) {  
  while (signal == 0) {}; // wait until instructed to work 
  printf(“child thread> sum is %d”, a + b); 
  signal = 0;  // my work is done 
} 
 
void main() { 
  signal = 0; 
  thread_create(&dosum);  // spawn child thread 
  a = 5, b = 3; 
  signal = 1;             // tell child to work 
  while (signal == 1) {}  // wait until child done 
  printf(“all done, exiting\n”); 
} 
 
Message-passing uses the process model: 
 
int a, b; 
… 
void dosum() {  
  recvMsg(mainID, &a, &b); 
  printf(“child process> sum is %d”, a + b); 
} 
 
void main() { 
  if (fork() == 0)  // I am the child process 
    dosum(); 
  else {            // I am the parent process 
    a = 5, b = 3; 
    sendMsg(childID, a, b); 
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    wait(childID); 
    printf(“all done, exiting\n”); 
  } 
} 
 
Here’s the relevant section of documentation on the fork() function: 
“Upon successful completion, fork() and fork1() return  0  to the  
child  process  and  return the process ID of the child process to  the  
parent  process.” 
 
Interconnection topologies 

Early message-passing designs provided hardware primitives that 
were very close to the message-passing model. 

Each node was connected to a 
fixed set of neighbors in a 
regular pattern by point-to-point 
links that behaved as FIFOs. 

A common design was a 
hypercube, which had 2  n 
links per node, where n was the 
number of dimensions. 

The diagram shows a 3D cube. 

One problem with hypercubes 
was that they were difficult to 
lay out on silicon. 

000001

010011

100

110

101

111

 

Because of that, 2D meshes eventually supplanted hypercubes. 
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Here is an example 
of a 16-node mesh.  
Note that the last 
element in one row is 
connected to the first 
element in the next. 

If the last element in 
each row were 
connected to the first 
element in the same 
row, we would have a 
torus instead.  

Early message-passing machines used a FIFO on each link. 

• Thus, software sends were implemented as synchronous 
hardware operations at each node. 

 What was the problem with this, for multi-hop messages?   
You needed interrupts at all the intermediate processors. 
 

• Synchronous ops were replaced by DMA, enabling non-
blocking operations 

– A DMA device is a special-purpose controller that transfers 
data between memory and an I/O device without processor 
intervention. 

– Messages were buffered by the message layer of the 
system at the destination until a receive took place. 

– When a receive took place, the data was copied to the 
destination process’s address space. 
 

The diminishing role of topology. 

• With store-and-forward routing, topology was important. 



 

Lecture 2 Architecture of Parallel Computers 9 

 Parallel algorithms were often changed to conform to the 
topology of the machine on which they would be run. 

• Introduction of pipelined (“wormhole”) routing made topology 
less important. 

In current machines, it makes less difference how far the data travels. 

This simplifies programming; cost of interprocessor communication is 
essentially independent of which processor is receiving the data. 

Toward architectural convergence 

In 1990, there was a clear distinction between message-passing and 
shared-memory machines.  Today, there isn’t a distinct boundary. 

• Message-passing operations are supported on most shared-
memory machines. 

• A shared virtual address space can be constructed on a 
message-passing machine, by sharing pages between 
processors. 

° When a missing page is accessed, a page fault occurs. 

° The OS fetches the page from the remote node via 
message-passing. 

At the machine-organization level, the designs have converged too. 

The block diagrams for shared-memory and message-passing 
machines look essentially like this: 

In shared memory, the network 
interface is integrated with the 
memory controller.   

It initiates a transaction to access 
memory at a remote node. 

In message-passing, the network 
interface is essentially an I/O device. 

What does Solihin say about the ease of writing shared-memory and 
message-passing programs on these architectures? 

M  M M 

Network 

P 

$ 

P 

$ 

P 

$ 
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 Which model is easier to program for initially? 

 Why doesn’t it make much difference in the long run? 
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The limits of parallelism: Amdahl’s law 

Speedup is defined as 

  time for serial execution     
time for parallel execution 

or, more precisely, as 

time for serial execution of best serial algorithm 
  time for parallel execution of our algorithm 

Give two reasons why it is better to define it the second way than the 
first.   
  

[§4.3.1]  If some portions of the problem don’t have much 
concurrency, the speedup on those portions will be low, lowering the 
average speedup of the whole program. 

Exercise: Submit your answers to the questions below. 

Suppose that a program is composed of a serial phase and a parallel 
phase. 

 The whole program runs for 1 time unit. 

 The serial phase runs for time s, and the parallel phase for 
time 1s. 

Then regardless of how many processors N are used, the execution 
time of the program will be at least ___ 

and the speedup will be no more than ___.  This is known as 
Amdahl’s law. 

For example, if 25% of the program’s execution time is serial, then 
regardless of how many processors are used, we can achieve a 
speedup of no more than __. 

Efficiency is defined as 
            speedup   
number of processors 
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 Let us normalize computation time so that 

• the serial phase takes time 1, and 
• the parallel phase takes time p if run on a single processor. 
 

Then if run on a machine with N processors, the parallel phase takes 
p/N. 

Let  be the ratio of serial time to total execution time. Thus 

  
1

1  p/N
  

N
N  p

 .
 

For large N,  approaches     , so efficiency approaches      . 

Does it help to add processors?   

Gustafson’s law: But this is a pessimistic way of looking at the 
situation. 
 
In 1988, Gustafson et al. noted that as computers become more 
powerful, people run larger and larger programs. 

Therefore, as N increases, p tends to increase too.  Thus, as N 
increases,  does not get very close to 1, and efficiency remains 
reasonable. 

There may be a maximum to the amount of speedup for a given 
problem size, but since the problem is “scaled” to match the 
processing power of the computer, there is no clear maximum to 
“scaled speedup.” 

Gustafson’s law states that any sufficiently large problem can be 
efficiently parallelized.
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The limits of parallelism: Amdahl’s law 

Speedup is defined as 

  time for serial execution     
time for parallel execution 

or, more precisely, as 

time for serial execution of best serial algorithm 
  time for parallel execution of our algorithm 

Give two reasons why it is better to define it the second way than the 
first.   
  

[§4.3.1]  If some portions of the problem don’t have much 
concurrency, the speedup on those portions will be low, lowering the 
average speedup of the whole program. 

Exercise: Submit your answers to the questions below. 

Suppose that a program is composed of a serial phase and a parallel 
phase. 

 The whole program runs for 1 time unit. 

 The serial phase runs for time s, and the parallel phase for 
time 1s. 

Then regardless of how many processors N are used, the execution 
time of the program will be at least s 

and the speedup will be no more than 1/s.  This is known as 
Amdahl’s law. 

For example, if 25% of the program’s execution time is serial, then 
regardless of how many processors are used, we can achieve a 
speedup of no more than 4. 

Efficiency is defined as 
            speedup   
number of processors 
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 Let us normalize computation time so that 

• the serial phase takes time 1, and 
• the parallel phase takes time p if run on a single processor. 
 

Then if run on a machine with N processors, the parallel phase takes 
p/N. 

Let  be the ratio of serial time to total execution time. Thus 

  
1

1  p/N
  

N
N  p

 .
 

For large N,  approaches 1, so efficiency approaches 0. 

Does it help to add processors?  Not much. 

Gustafson’s law: But this is a pessimistic way of looking at the 
situation. 
 
In 1988, Gustafson et al. noted that as computers become more 
powerful, people run larger and larger programs. 

Therefore, as N increases, p tends to increase too.  Thus, as N 
increases,  does not get very close to 1, and efficiency remains 
reasonable. 

There may be a maximum to the amount of speedup for a given 
problem size, but since the problem is “scaled” to match the 
processing power of the computer, there is no clear maximum to 
“scaled speedup.” 

Gustafson’s law states that any sufficiently large problem can be 
efficiently parallelized. 
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Shared-Memory Parallel 
Programming 

[§3.1]  Solihin identifies several 
steps in parallel programming. 

The first step is identifying parallel 
tasks.  Can you give an example? 

The next step is identifying 
variable scopes.  What does this 
mean? 

The next step is grouping tasks 
into threads.  What factors need 
to be taken into account to do 
this?  Tasks should not have a lot 
of data dependencies, because 
that requires a lot of 
synchronization.  They should not 
be too fine grained,  There should 
be enough to make use of the 
available processors, and the load should be balanced among the 
processors. 

Then threads must be synchronized.  How did we see this done in the 
three parallel-programming models? 

What considerations are important in mapping threads to processors? 

Solihin says that there are three levels of parallelism: 

 program level 
 algorithm level 
 code level 

Identifying loop-level parallelism 

[§3.2] Goal: given a code, without knowledge of the algorithm, find 
parallel tasks. 
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Focus on loop-dependence analysis. 

Notations:  

 S is a statement in the source code 

 S[i, j, …] denotes a statement in the loop iteration [i, j, …] 

 “S1 then S2” means that S1 happens before S2 

 If S1 then S2: 

S1 T S2 denotes true dependence, i.e., S1 writes to a 
location that is read by S2  

S1 A S2 denotes anti-dependence, i.e., S1 reads a 
location written by S2   

S1 O S2 denotes output dependence, i.e., S1 writes to the 
same location written by S2  

Example: 

S1: x = 2; 
S2: y = x; 
S3: y = x + 4; 
S4: x = y; 
 
Exercise: Identify the dependences in the above code. 
 

 
 
 
 
 
 

Loop-independent vs. loop-carried dependences 

[§3.2]  Loop-carried dependence: dependence exists across 
iterations; i.e., if the loop is removed, the dependence no longer 
exists. 

Loop-independent dependence: dependence exists within an 
iteration; i.e., if the loop is removed, the dependence still exists. 
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Example: 

S1[i] T S1[i+1]: loop-carried 

S1[i] T S2[i]: loop-
independent 

S3[i,j] T S3[i,j+1]:  

 loop-carried on for j 
loop 

 no loop-carried 
dependence in for i 
loop 

S4[i,j] T S4[i+1,j]:  
 

 no loop-carried dependence in for j loop 

 loop-carried on for i loop 

Iteration-space Traversal Graph (ITG) 

[§3.2.1]  The ITG shows graphically the order of traversal in the 
iteration space.  This is sometimes called the happens-before 
relationship.  In an ITG, 

 A node represents a point in the iteration space 

 A directed edge indicates the next point that will be 
encountered after the current point is traversed 

Example: 

 

 

for (i=1; i<n; i++) { 
  S1: a[i] = a[i-1] + 1; 
  S2: b[i] = a[i]; 
} 
 
for (i=1; i<n; i++) 
  for (j=1; j< n; j++) 
    S3: a[i][j] = a[i][j-1] + 1; 
 
for (i=1; i<n; i++) 
  for (j=1; j< n; j++) 
    S4: a[i][j] = a[i-1][j] + 1; 
 

for (i=1; i<4; i++) 
  for (j=1; j<4; j++) 
    S3: a[i][j] = a[i][j-1] + 1; 
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Loop-carried Dependence Graph (LDG) 

 LDG shows the true/anti/output dependence relationship 
graphically. 

 A node is a point in the iteration space. 

 A directed edge represents the dependence. 

Example:  

 

 

 

i 

j 

1 

2 

3 

3 2 1 

for (i=1; i<4; i++) 
  for (j=1; j<4; j++) 
    S3: a[i][j] = a[i][j-1] + 1; 
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Another example: 

 
 Draw the ITG 

 List all the dependence relationships 

Note that there are two “loop nests” in the code. 

 The first involves S1. 
 The other involves S2 and S3. 

What do we know about the ITG for these nested loops?   
 

1 

2 

3 

3 2 1 

i 

j 

T T 

T T 

T T 

for (i=1; i<=n; i++) 
  for (j=1; j<=n; j++) 
    S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j]; 
 
for (i=1; i<=n; i++) 
  for (j=1; j<=n; j++) { 
    S2: a[i][j] = b[i][j] + c[i][j]; 
    S3: b[i][j] = a[i][j-1] * d[i][j]; 
  }  
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Dependence relationships for Loop Nest 1 

 True dependences:   Current iteration needs to write before 
next iteration reads 

o S1[i,j] T S1[i,j+1] 
o S1[i,j] T S1[i+1,j] 

 Output dependences:  

o None 

 Anti-dependences:   Current iteration needs to read before 
other code overwrites. 

o S1[i,j] A S1[i+1,j] 
o S1[i,j] A S1[i,j+1] 

Exercise:  Suppose we dropped off the first half of S1, so we had 

S1: a[i][j] = a[i-1][j] + a[i+1][j]; 

or the last half, so we had  

S1: a[i][j] = a[i][j-1] + a[i][j+1]; 

Which of the dependences would still exist?   
 

i 

1 

2 

n 

n 2 1 . . . 

. . . 
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1st half 2nd half 
S1[i,j] T S1[i+1,j], 
S1[i,j] A S1[i+1,j] 

S1[i,j] T S1[i,j+1], 
S1[i,j] A S1[i,j+1] 

These are the dependences on 
the same row, as you would 
expect, because iteration is only 
being done using points in the 
same row. 

These are the dependences on 
the same column, as you would 
expect, b/c iteration is only being 
done using points in the same 
column. 

 
Draw the LDG for Loop Nest 1. 

 

Dependence relationships for Loop Nest 2 

 True dependences:  

o S2[i,j] T S3[i,j+1] 

 Output dependences:  

o None 

 Anti-dependences:  

o S2[i,j] A S3[i,j]  (loop-independent dependence) 

i 

j 

1 

2 

n 

n 2 1 . . . 

. . . 

Note: each 
edge represents 
both true and 
anti-dependences 
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Draw the LDG for Loop Nest 2. 

 

Why are there no vertical edges in this graph?  Answer here.   
 

Why is the anti-dependence not shown on the graph?   
 

Exercise:  Consider this code sequence. 

for (i = 3; i < n; i++) {  
for (j = 0; j < n - 3; j++) {  

S1: A[i][j] = A[i - 3][j] + A[i][j + 3];  
S2: B[i][j] = A[i][j] / 2;  

}  
} 

List the dependences, and say whether they are loop independent or 
loop carried.  Then draw the ITG and LDG (you don’t need to submit 
these). 

 

 

i 

j 

1 

2 

n 

n 2 1 . . . 

. . . 

Note: each 
edge represents 
only true dependences 
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Finding parallel tasks across iterations 

[§3.3.1]  Analyze loop-carried dependences:  

 Dependences must be enforced (especially true dependences; 
other dependences can be removed by privatization) 

 There are opportunities for parallelism when some 
dependences are not present. 

Example 1  
 

 

LDG:  

 

We can divide the loop into two parallel 
tasks (one with odd iterations and 
another with even iterations): 

for (i=2; i<=n; i++) 
  S: a[i] = a[i-2]; 

for (i=2; i<=n; i+=2) 
  S: a[i] = a[i-2]; 
for (i=3; i<=n; i+=2) 
  S: a[i] = a[i-2]; 
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Example 2 

 

 

LDG 

 

How many parallel tasks are there here?  n 
 

Example 3 

 
LDG 
 

 

 

 

Identify which 
nodes are not 
dependent on each other 

i 

j 

1 

2 

n 

n 2 1 . . . 

. . . 

for (i=0; i<n; i++) 
  for (j=0; j< n; j++) 
    S3: a[i][j] = a[i][j-1] + 1; 

for (i=1; i<=n; i++) 
  for (j=1; j<=n; j++) 
    S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j]; 

j

1

2

n

n21 . . 
.

Note: each 
edge represents 
both true, and 
anti-dependences 



 

Lecture 5 Architecture of Parallel Computers 25 

In each anti-diagonal, the nodes are independent of each other 

We need to rewrite the code to iterate over anti-diagonals: 

Calculate number of anti-diagonals 
for each anti-diagonal do 
 Calculate the number of points in the current anti-diagonal 
   for_all points in the current anti-diagonal do  
      Compute the value of the current point in the matrix 

Parallelize the loops highlighted above. 

i

1

2

n

n21 ... 

... 

Note: each 
edge represents 
both true, and 
anti-dependences 

for (i=1; i <= 2*n-1; i++) {// 2n-1 anti-diagonals 
  if (i <= n) {                  
    points = i;          // number of points in anti-diag 
    row = i;             // first pt (row,col) in anti-diag  
    col = 1;             // note that row+col = i+1 always 
  } 
  else { 
    points = 2*n – i; 
    row = n; 
    col = i-n+1;         // note that row+col = i+1 always  
  } 
  for_all (k=1; k <= points; k++) { 
    a[row][col] = …      // update a[row][col] 
    row--; col++; 
  } 
} 
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DOACROSS Parallelism 

[§3.3.2]  Suppose we have this code:   

Can we execute anything 
in parallel? 

 

Well, we can’t run the iterations of the for loop in parallel, because 
… 

S[i] T S[i+1]  (There is a loop-carried dependence.) 

But, notice that the b[i]*c[i] part has no loop-carried 
dependence. 

This suggests breaking up the loop into two: 

The first loop is ||izable. 
The second is not. 

Execution time: 
N(TS1+TS2) 

What is a disadvantage of 
this approach?  It uses more memory, for the temp array.  Execution 
time = NTS1 + NTS2 

Here’s how to solve this problem: 

What is the execution time now?  TS1 + 
NTS2 

for (i=1; i<=N; i++) { 
  S1: temp[i] = b[i] * c[i]; 
} 
for (i=1; i<=N; i++) { 
  S2: a[i] = a[i-1] + temp[i]; 
} 

post(0); 
for_all (i=1; i<=N; i++) { 
  S1: temp = b[i] * c[i]; 
  wait(i-1); 
  S2: a[i] = a[i-1] + temp; 
  post(i); 
} 

for (i=1; i<=N; i++) { 
  S: a[i] = a[i-1] + b[i] * c[i]; 
} 
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Function parallelism 

 [§3.3.3]  Identify dependences in a loop body. 

 If there are independent statements, can split/distribute the 
loops. 

Example: 

Loop-carried 
dependences:  

S1[i] T S1[i+1] 
S1[i] A S2[i+1] 
S4[i] T S4[i+1] 

Loop-indep. dependences:              
S1[i] T S3[i] 

Note that S4 has no dependences with other statements 

After loop distribution: 

Each loop is a parallel 
task. 

This is called function 
parallelism. 

It can be distinguished 
from data parallelism, 
which we saw in DOALL 

and DOACROSS. 

Further transformations can be performed (see p. 64 of text). 

 “S1[i] A S2[i+1]” implies that S2 at iteration i+1 must be 
executed after S1 at iteration i.  Hence, the dependence is not 
violated if all S2s execute after all S1s. 

Characteristics of function parallelism: 

 Parallelism is of modest size, does not grow with input. 

 Little sync, only at beginning and end. 

for (i=0; i<n; i++) { 
  S1: a[i] = b[i+1] * a[i-1]; 
  S2: b[i] = b[i] * coef; 
  S3: c[i] = 0.5 * (c[i] + a[i]); 
  S4: d[i] = d[i-1] * d[i]; 
} 

for (i=0; i<n; i++) { 
  S1: a[i] = b[i+1] * a[i-1]; 
  S2: b[i] = b[i] * coef; 
  S3: c[i] = 0.5 * (c[i] + a[i]); 
} 
 
for (i=0; i<n; i++) { 
  S4: d[i] = d[i-1] * d[i]; 
} 
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 Difficult to balance load. 

Can use function parallelism along with data parallelism when data 
parallelism is limited. 

DOPIPE Parallelism 

[§3.3.4]  Another strategy for loop-carried dependences is pipelining 
the statements in the loop. 

Consider this situation: 

Loop-carried dependences:  

S1[i] T S1[i+1] 

Loop-indep. dependences:  

S1[i] T S2[i] 

To parallelize, we just need to make sure the two statements are 
executed in sync: 

 

Qu
esti
on:  
Wh
at’s 
the 
diff

erence between DOACROSS and 
DOPIPE?   
 
 
 

for (i=2; i<=N; i++) { 
  S1: a[i] = a[i-1] + b[i]; 
  S2: c[i] = c[i] + a[i]; 
} 

for (i=2; i<=N; i++) { 
  a[i] = a[i-1] + b[i]; 
  post(i); 
} 
 
for (i=2; i<=N; i++) { 
  wait(i); 
  c[i] = c[i] + a[i]; 
} 
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Determining variable scope 

[§3.6]   This step is specific to the shared-memory programming 
model.  For each variable, we need to decide how it is used.  There 
are three possibilities: 

 Read-only: variable is only read by multiple tasks 

 R/W non-conflicting: variable is read, written, or both by only 
one task 

 R/W conflicting: variable is written by one task and may be read 
by another 

Intuitively, why are these cases different?  RO … no updates ever 
occur, so you can copy without having to keep copies up to date.  
With RWn, you don’t have to worry about other tasks.  With RWc, you 
need to synchronize access. 

Example 1 

Let’s assume 
each iteration 
of the for i 
loop is a 
parallel task. 

Fill in the tableaus here. 

Read-only R/W non-conflicting R/W conflicting 

n, c, d a, b i, j 

Now, let’s assume that each for j iteration is a separate task. 

Read-only R/W non-conflicting R/W conflicting 

n, i, c, d b a, j 

Do these two decompositions create the same number of tasks?   
No, for I creates n tasks; for j creates n2 

for (i=1; i<=n; i++) 
  for (j=1; j<=n; j++) { 
    S2: a[i][j] = b[i][j] + c[i][j]; 
    S3: b[i][j] = a[i][j-1] * d[i][j]; 
  } 
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Example 2 

Let’s assume that 
each for j iteration is 
a separate task.   
 

 

 

Read-only R/W non-conflicting R/W conflicting 

n, i, c, d a, b, e j 

Exercise: Suppose each for i iteration were a separate task … 

Read-only R/W non-conflicting R/W conflicting 
n, c, d b, e a, i, j 

 
To test your knowledge of this approach, try the recent homework 
problem on the following page: 

for (i=1; i<=n; i++) 
  for (j=1; j<=n; j++) { 
    S1: a[i][j] = b[i][j] + c[i][j]; 
    S2: b[i][j] = a[i-1][j] * d[i][j]; 
    S3: e[i][j] = a[i][j]; 
  } 
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Problem k.  (15 points)  The following code is a commonly used algorithm in image processing 
applications.  
 
Consider an image f with width=ImageWidth and height=ImageHeight.  f is a 2D grid of pixels. k is 
a kernel of width=2w+1 and height=2h+1 where (2w+1) < ImageWidth and (2h+1) < ImageHeight. 
The image f is processed using the kernel k to produce a new image g as shown: 
 

for y = 0 to ImageHeight do  
 for x = 0 to ImageWidth do  
  sum = 0  
  for i= -h to h do  
   for j = –w to w do  
    sum = sum + k[j,i] * f [x – j, y – i]  

   end for  
  end for  
  g[x y] = sum  
 end for 
end for 

(a). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if the for y loop is 
parallelized. 

Read only R/W non-conflicting R/W conflicting 
 
 
 

  

 
(b). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if (only) the for i 
loop is parallelized. Assume that the for i tasks for the previous value of x must complete before 
the for i tasks of the current value of x are started. 

Read only R/W non-conflicting R/W conflicting 
 
 
 

  

 
(c). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if the for i loop is 
parallelized. Assume that the for i tasks for the previous value of x do not have to complete 
before the for i tasks of the current value of x are started. 

Read only R/W non-conflicting R/W conflicting 
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Privatization 

Privatization means making private copies of a shared variable. 

What is the advantage of privatization?   
Tasks can run in parallel without paying attention to what other task is 
accessing the variable. 

Of the three kinds of variables in the table above, which kind(s) does 
it make sense to privatize?   R/W conflicting; other variables can 
simply be accessed where they reside in memor. 

Under what conditions is a variable privatizable? 

 If it is always defined (=written) in program order by a task 
before use (=read) by the same task (Case 1). 

 If its values in different parallel tasks are known ahead of time, 
allowing private copies to be initialized to the known values 
(Case 2). 

When a variable is privatized, one private copy is made for each 
thread (not each task). 

Result of privatization:  R/W conflicting  R/W non-conflicting 

Let’s revisit the examples. 

Example 1 

With each for i 
iteration a separate 
task, which of the 
R/W conflicting 
variables are privatizable? i, j 

 

Which case does each such variable fall into?   
i falls into Case 2 (value known ahead of time) 

j is Case 1 (always written by a task before being read by the task) 

for (i=1; i<=n; i++) 
  for (j=1; j<=n; j++) { 
    S2: a[i][j] = b[i][j] + c[i][j]; 
    S3: b[i][j] = a[i][j-1] * d[i][j]; 
  } 
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We can think of privatized variables as arrays, indexed by process ID:  
 

Example 2 

Parallel tasks: each for j loop iteration. 

Is the R/W conflicting variable j privatizable?  If so, which case does it 
represent?  Yes, Case 2. 

Reduction 

Reduction is another way to remove conflicts.  It is based on partial 
sums. 

Suppose we have a large matrix, and need to 
perform some operation on all of the elements—
let’s say, a sum of products—to produce a single 
result. 

We could have a single processor undertake this, 
but this is slow and does not make good use of the 
parallel machine. 

So, we divide the matrix into portions, and have one processor work 
on each portion. 

Then after the partial sums are complete, they are combined into a 
global sum.  Thus, the array has been “reduced” to a single element. 

Examples:  

 addition (+), multiplication (*) 

 Logical (and, or, …) 

The reduction variable is the scalar variable that is the result of a 
reduction operation. 

Criteria for reducibility: 

 Reduction variable is updated by each task, and the order of 
update is not important. 
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 Hence, the reduction operation must be associative and 
commutative. 

Goal: Compute 

y = y_init op x1 op x2 op x3 … op xn 

op is a reduction operator if it is commutative 

 u op v = v op u 

and associative  

(u op v) op w = u op (v op w) 

Summary of scope criteria 

Should be 
declared private 

Should be 
declared 
shared 

Should be de-
clared 

reduction 

Non-
privatizable 

R/W conflicting 

privatizable 
variables 

read-only vars. 

R/W non-
conflicting 

reduction 
variables 

declare as 
shared, protect 

by synch. 

 
 
Example 1 

with for i parallel 
tasks 

Fill in the answers 
here. 

Read-only R/W non-conflicting R/W conflicting 

n, c, d a, b i, j 

 

Declare as shared Declare as private 

n, c, d a, b i, j 

 

for (i=1; i<=n; i++) 
  for (j=1; j<=n; j++) { 
    S2: a[i][j] = b[i][j] + c[i][j]; 
    S3: b[i][j] = a[i][j-1] * d[i][j]; 
  } 

for (i=1; i<=n; i++) 
  for (j=1; j<=n; j++) { 
    S1: a[i][j] = b[i][j] + c[i][j]; 
    S2: b[i][j] = a[i-1][j] * d[i][j]; 
    S3: e[i][j] = a[i][j]; 
  } 

 

Lecture 6 Architecture of Parallel Computers 35 

Example 2 

with for j parallel tasks 

Fill in the answers here. 

 

Read-only R/W non-conflicting R/W conflicting 
n, i, c, d a, b, e j 

 

Declare as shared Declare as private 

n, i, c, d a, b, e j 

 

Example 3 

Consider matrix 
multiplication. 
 
Exercise:  
Suppose the 
parallel tasks are 
for k iterations.  Determine which variables are conflicting, which 
should be declared as private, and which need to be protected 
against concurrent access by using a critical section. 

Read-only R/W non-conflicting R/W conflicting 

A, B, i, j, n   C, k 

 

Declare as shared Declare as private 

A, B, i, j, n, C k 

Which variables, if any, need to be protected by a critical section?  
 
C 

Now, suppose the parallel tasks are for i iterations.  Determine which 
variables are conflicting, which should be declared as private, and 

for (i=0; i<n; i++) 
  for (j=0; j<n; j++) { 
    C[i][j] = 0.0; 
    for (k=0; k<n; k++) { 
      C[i][j] = C[i][j] + A[i][k]*B[k][j]; 
    }  
  } 
} 
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which need to be protected against concurrent access by using a 
critical section. 

Read-only R/W non-conflicting R/W conflicting 

A, B, n C i, j, k 

 

Declare as shared Declare as private 

A, B, n, C i, j, k 

Which variables, if any, need to be protected by a critical section?  
None. 

Synchronization 

Synchronization is how programmers control the sequence of 
operations that are performed by parallel threads. 

Three types of synchronization are in widespread use. 

 Point-to-point: 

o a pair of post() (or signal())and wait()  

o a pair of send() and recv() in message passing 

 Lock 

o a pair of lock() and unlock()  

o only one thread is allowed to be in a locked region at a 
given time 

o ensures mutual exclusion 

o used, for example, to serialize accesses to R/W 
concurrent variables. 

 Barrier 

o a point past which a thread is allowed to proceed only 
when all threads have reached that point.  

Lock 
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What problem may arise here? 

 

 

Two threads may read sum and increment it by a[i] before the other 
has finished.  Then one of the increments will be lost. 

A lock prevents more than one thread from being inside the locked 
region. 

Issues:  

 What granularity to lock?  

 How to build a lock that is correct and fast.  

Barrier: Global event synchronization 

 

// inside a parallel region 
for (i=start_iter; i<end_iter; i++) 
  sum = sum + a[i]; 

// inside a parallel region 
for (i=start_iter; i<end_iter; i++) { 
    lock(x); 
    sum = sum + a[i]; 
    unlock(x); 
} 
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A barrier is used when the code that follows requires that all threads 
have gotten to this point.  Example: Simulation that works in terms of 
timesteps. 

Load balance is important. 

Execution time is dependent on the slowest thread. 

This is one reason for gang scheduling and avoiding time sharing and 
context switching. 
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Question 1.  (a) (18 points) Considert the following algorithm.  If we are to parallelize this 
algorithm for each for loop, fill in the table appropriately for each variable used.  

for (i = 0; i < n; i++){ 
 for (j = 0; j < n; j++){ 
  for (k = 0; k < n; k++){ 
   if (d[i][j] - d[j][k] < d[i][k]) { 
    b[j][k] = k*j; 

d[i][j] = d[j][k] + d[i][k]; 
} 

  } 
 } 
} 
 

Which loop parallelized?  for i for j for k 

Read-only n i, n  

RW non-conflicting  b  

RW conflicting i, j, k, b, d d, j, k  

Private i, j, k j, k  

Shared b, d, n d, i, n, b  

 
(b) (2 points) Do any of the shared variables need to be protected by a critical section?  Explain. 
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Simulating ocean currents 

We will study a parallel application that simulates ocean currents. 

Goal: Simulate the motion of water currents in the ocean.  Important 
to climate modeling. 

The overall structure of the program looks like this: 

 

The program offers opportunities for function parallelism (the different 
blocks in a row) and data parallelism (parallelism within a block). 
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We will concentrate on solving the equation for ψa (data parallelism). 

Motion depends on atmospheric forces, friction with ocean floor, and 
“friction” with ocean walls. 

To predict the state of the ocean at any instant, we need to solve 
complex systems of equations. 

The problem is continuous in both space and time.   
But to solve it, we discretize it over both dimensions. 

Every important variable, e.g., 

• pressure • velocity • currents 

has a value at each grid point. 

This model uses a set of 2D horizontal cross-sections through the 
ocean basin. 

Equations of motion are solved at all the grid points in one time-step. 

 The state of the variables is updated, based on this solution. 

 The equations of motion are solved for the next time-step. 

Tasks 

The first step is to divide the work into tasks. 

(a) Cross sections  
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 A task is an arbitrarily defined portion of work. 

 It is the smallest unit of concurrency that the program can exploit. 

Example:  In the ocean simulation, a task can be computations on— 

 a single grid point,  
 a row of grid points, or  
 any arbitrary subset of the grid. 

Tasks are chosen to match some natural granularity in the work. 

 If the grain is small, the decomposition is called fine grained. 

 If it is large, the decomposition is called coarse grained. 

Threads 

A thread is an abstract entity that performs tasks. 

 A program is composed of cooperating threads. 
 Each thread is assigned to a processor. 
 Threads need not correspond 1-to-1 with processors! 

Example:  In the ocean simulation, an equal number of rows may be 
assigned to each thread. 

Four steps in parallelizing a program: 

 Decomposition of the computation into tasks. 
 Assignment of tasks to threads. 
 Orchestration of the necessary data access, communication, 

and synchronization among threads. 
 Mapping of threads to processors. 
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Together, decomposition and assignment are called partitioning. 

They break up the computation into tasks to be divided among 
threads. 

The number of tasks available at a time is an upper bound on the 
achievable parallelism. 

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload
Reduce communication volume

Orchestration Yes Reduce noninherent communication via data 
locality

Reduce communication and synchronization cost 
as seen by the processor

Reduce serialization at shared resources
Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if 
necessary

Exploit locality in network topology

 

P0

Tasks Processes Processors

P1

P2 P3

p0 p1

p2 p3

p0 p1

p2 p3

Partitioning

Sequential
computation

Parallel
program
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Parallelization of an Example Program 

[§2.3]  In this lecture, we will consider a parallelization of the kernel of 
the Ocean application. 

The serial program 

The equation solver solves a PDE on a grid. 

It operates on a regular 2D grid of (n+2) by (n+2) elements. 

• The boundary elements in the border rows and columns do not 
change. 

• The interior n-by-n points are updated, starting from their initial 
values. 

 

A [ i,j ] = 0.2    ( A [ i,j ] +  A [ i,j –  1] +  A [ i –  1 ,  j ] + 

A [ i,j  + 1] +  A [ i  + 1,  j ]) 

Expr ession for updating each interior point: 

 

• The old value at each point is replaced by the weighted 
average of itself and its 4 nearest-neighbor points. 

• Updates are done from left to right, top to bottom. 

° The update computation for a point sees the new values of 
points above and to the left, and 

° the old values of points below and to the right. 

 This form of update is called the Gauss-Seidel method. 

During each sweep, the solver computes how much each element 
has changed since the last sweep. 
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• If the sum of these differences is less than a “tolerance” 
parameter, the solution has converged. 

• If so, we exit solver; if not, we do another sweep. 

Here is the code for the solver. 

Answer these questions about the solver. 

Why is the array size (n+2)(n+2) rather than nn?  

Why is it necessary to use a temp variable?  

Why is the denominator in Line 25 n*n?  
 
 

1.  int n;            /*size of matrix: (n + 2-by-n + 2) elements*/ 
2.  double **A, diff = 0; 
 
3.  main() 
4.  begin 
5.   read(n) ;           /*read input parameter: matrix size*/ 
6.   A  malloc (a 2-d array of size n + 2 by n + 2 doubles); 
7.   initialize(A);        /*initialize the matrix A somehow*/  
8.   Solve (A);         /*call the routine to solve equation*/ 
9.  end main 
 
10. procedure Solve (A)       /*solve the equation system*/ 
11.  double **A;          /*A is an (n + 2)-by-(n + 2) array*/ 
12. begin 
13.  int i, j, done = 0; 
14.  float diff = 0, temp; 
15.  while (!done) do       /*outermost loop over sweeps*/ 
16.   diff = 0;          /*initialize maximum difference to 0*/ 
17.   for i  1 to n do     /*sweep over nonborder points of grid*/ 
18.    for j  1 to n do 
19.     temp = A[i,j];     /*save old value of element*/ 
20.     A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21.      A[i,j+1] + A[i+1,j]); /*compute average*/ 
22.     diff += abs(A[i,j] - temp);      
23.    end for 
24.   end for 
25.   if (diff/(n*n) < TOL) then done = 1;         
26.  end while 
27. end procedure 
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Decomposition 

A simple way to identify concurrency is to look at loop iterations. 

Is there much concurrency in this example?  Does the algorithm let 
us perform more than one sweep concurrently? No, we can only start 
the i+1st iteration after we finish the ith. 

Note that— 

• Computation proceeds from left to right and top to bottom. 

• Thus, to compute a point, we use  

° the updated values from the point above and the point to the 
left, but 

° the “old” values of the point itself and its neighbors below 
and to the right. 

Here is a diagram that illustrates the dependences. 

 

The horizontal and vertical 
lines with arrows indicate 
dependences. 

The dashed lines along the 
antidiagonal connect points 
with no dependences that can 
be computed in parallel. 

Check: If A[3,4]is being 
computed, which updated 
values are used in the 
calculation? A[2, 4], A[3, 3] 

Which of the following points can be updated in parallel? 

Of the O(n2) work in each sweep,  concurrency proportional to          
the number of antidiagonals. (Give your answer in terms of n; how 
many points along an antidiagonal can be computed in parallel?) 

How could we exploit this parallelism? 
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• We can leave loop structure alone and let loops run in parallel, 
inserting synchronization ops to make sure a value is computed 
before it is used. 

Why isn’t this a good idea?   
 

• We can change the loop structure, making 

° the outer for loop (line 17) iterate over anti-diagonals, and 

° the inner for loop (line 18) iterate over elements within an 
antidiagonal. 

Why isn’t this a good idea?  
 
 

The Gauss-Seidel algorithm doesn’t require us to update the points 
from left to right and top to bottom. 

It is just a convenient way to program on a uniprocessor. 

We can compute the points in another order, as long as we use 
updated values frequently enough (if we don’t, the solution will 
converge, but more slowly). 

Red-black ordering 

Let’s divide the points into alternating “red” and “black” points: 

 

Red point 

Black point 

 

To compute a red point, we don’t need the updated value of any other 
red point.  But we need the updated values of 2 black points. 
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And similarly for computing black points. 

Thus, we can divide each sweep into two phases. 

• First we compute all red points. 
• Then we compute all black points. 

True, we don’t use any updated black values in computing red points. 

But we use all updated red values in computing black points. 

 

Whether this converges more slowly or faster than the original 
ordering depends on the problem. 

But it does have important advantages for parallelism. 

• Which points can be computed in parallel? 

• Altogether, how many red points can be computed in parallel?   

• How many black points can be computed in parallel?   
 

Red-black ordering is effective, but it doesn’t produce code that can 
fit on a single display screen. 

A simpler decomposition 

Another ordering that is simpler but still works reasonably well is just 
to ignore dependences between grid points within a sweep. 

A sweep just updates points based on their nearest neighbors, 
regardless of whether the neighbors have been updated yet. 

Global synchronization is still used between sweeps, however. 
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Now execution is no longer deterministic.  (Does this matter?) 

The number of sweeps needed, and the results, may depend on the 
number of processors used. 

But for most reasonable assignments of processors, the number of 
sweeps will not vary much. 

Let’s look at the code for this. 

 
The only difference is that for has been replaced by for_all. 

A for_all just tells the system that all iterations can be executed in 
parallel. 

With for_all in both loops, all n2 iterations of the nested loop can be 
executed in parallel. 

We could write the program so that the computation of one row of 
grid points must be assigned to a single processor.  How would we 
do this?  Make the outer loop for_all, but the inner loop would 
change back to for. 

With each row assigned to a different processor, each task has to 
access about 2n grid points that were computed by other processors; 
meanwhile, it computes n grid points itself. 

So the communication-to-computation ratio is O(1). 

15. while (!done) do       /*a sequential loop*/ 
16.  diff = 0;        
17.  for_all i  1 to n do    /*a parallel loop nest*/ 
18.   for_all j  1 to n do 
19.    temp = A[i,j];     
20.    A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21.     A[i,j+1] + A[i+1,j]);      
22.    diff += abs(A[i,j] - temp);      
23.   end for_all 
24.  end for_all 
25.  if (diff/(n*n) < TOL) then done = 1;         
26. end while 
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Assignment 

How can we statically assign elements to processes? 

• One option is “block 
assignment”—Row i is 
assigned to process i / p. 

p
0

p
1

p
2

p
3

 

• Another option is “cyclic assignment—Process i is assigned 
rows i, i+p, i+2p, etc. 

• Another option is 2D contiguous block partitioning. 

We could instead use dynamic assignment, where a process gets an 
index, works on the row, then gets a new index, etc.  Is there any 
advantage to this?   

What are advantages and disadvantages of these partitionings? 

Static assignment of rows to processes reduces concurrency  
 

But block assignment reduces communication, by assigning adjacent 
rows to the same processor. 

How many rows now need to be accessed from other processors?   

So the communication-to-computation ratio is now only O(  ). 

Orchestration 

Once we move on to the orchestration phase, the computation model 
constrains our decisions. 
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Data-parallel model 

In the code below, we assume that global declarations are used for 
shared data, and that any data declared within a procedure is private. 

Global data is allocated with g_malloc. 

Differences from sequential program: 

• for_all loops 
• decomp statement 
• mydiff variable, private to each process 
• reduce statement 

 

1.  int n,  nprocs ; /*grid size (n+2n+2) and # of processes*/ 
2.  double **A, diff = 0; 

3.  main() 
4. begin 
5.  read(n); read( nprocs ); ;  /*read input grid size and # of processes*/ 
6.   A     G_MALLOC  (a 2-d array of size n+2 by n+2 doubles); 
7.  initialize(A); /*initialize the matrix A somehow*/ 
8.  Solve (A); /*call the routine to solve equation*/ 
9.  end main 

10. procedure Solve(A) /*solve the equation system*/ 
11.  double **A;    /* A is an (n+2n+2) array*/ 
12.  begin 
13. int i, j, done = 0; 
14. float  mydiff  = 0, temp; 
14a. DECOMP A[BLOCK,*, nprocs]; 
15. while (!done) do /*outermost loop over sweeps*/ 
16. mydiff  = 0;   /*initialize maximum difference to 0 */ 
17. for_all  i    1 to n do /*sweep over non-border points of grid*/ 
18. for_all  j    1 to n do 
19. temp = A[i,j]; /*save old value of element*/ 
20. A[i,j]    0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21. A[i,j+1] + A[i+1,j]); /* compute average*/ 
22. mydiff += abs(A[i,j] - temp); 
23. end for_all 
24. end for_all 
24a. REDUCE (mydiff, diff, ADD); 
25. if (diff/(n*n) < TOL) then done = 1; 
26. end while 
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The decomp statement has a twofold purpose. 

• It specifies the assignment of iterations to processes. 

 The first dimension (rows) is partitioned into nprocs contiguous 
blocks.  The second dimension is not partitioned at all. 

 Specifying [CYCLIC, *, nprocs] would have caused a 
cyclic partitioning of rows among nprocs processes. 

 Specifying [*,CYCLIC, nprocs] would have caused a  
cyclic partitioning of columns among nprocs processes. 

 Specifying [BLOCK, BLOCK, nprocs] would have implied a 
2D contiguous block partitioning. 

 For all of these partitionings, tell which processing element in 
a 64-PE system would compute A[33, 65]. If the grid is 1024 
x 1024? 

• It specifies the assignment of grid data to memories on a dis-
tributed-memory machine.  (Follows the owner-computes rule.) 

The mydiff variable allows local sums to be computed. 

The reduce statement tells the system to add together all the mydiff 
variables into the shared diff variable. 
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Shared-memory model 

In this model, we 
need mechanisms to 
create processes and 
manage them. 

After we create the 
processes, they 
interact as shown on 
the right. Sweep

Test Convergence

Processes

Solve Solve Solve Solve
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What are the main differences between the serial program and this 
program? 

• The first process creates nprocs–1 worker processes.  All n 
processes execute Solve. 

 All processes execute the same code. 

 But all do not execute the same instructions at the same time. 

• Private variables like mymin and mymax are used to control 
loop bounds. 

• All processors need to— 

1.  int n,  nprocs; /*matrix dimension and number of processors to be used*/
2a. double**A, diff; /*A is global (shared) array representing the grid*/ 

/*diff is global (shared) maximum difference in current 
sweep*
/2b. LOCKDE C(diff_lock); /*declaration of lock to enforce mutual exclusion*/ 

2c. BARDEC (bar1); /*barrier declaration for global synchronization between 
sweeps*
/

3.  main() 
4.  begin 
5.  read(n); read( nprocs ); /*read input matrix size and number of processes */ 
6.  A   -  (a two-dimensional array of size n+2 by n+2 doubles); 
7.  initialize(A); /*initialize A in an unspecified way*/ 
8a. CREATE (nprocs–1, Solve, A); 
8. Solve(A); /*main process becomes a worker 

t */8b.  WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/ 
9.  end main 
10.  procedure Solve(A) 
11.  double**A; /*A is entire n+2-by-n+2 shared array, 

as in the sequential program*/ 
12. begin 
13. int i,j,  pid , done = 0; 
14. float temp,  mydiff  = 0; /*private variables*/ 
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/ 
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/ 
15.  while (!done) do /* outer loop over all diagonal elements*/ 
16.  mydiff =  diff  = 0 ; /*set global diff to 0 (okay for all to do it)*/ 
16a. BARRIER(bar1, nprocs); /*ensure all reach here before anyone modifies diff*/ 
17.  for i   mymin  to  mymax  do /*for each of my rows */ 
18.  for j    1 to n do /*for all nonborder elements in that row*/ 
19. temp = A[i,j]; 
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21. A[i,j+1] + A[i+1,j]); 
22. mydiff  += abs(A[i,j] - temp); 
23.  endfor 
24.  e ndfor 
25a. LOCK(diff_lock); /*update global diff if necessary*/ 
25b. diff +=  mydiff ; 
25c. UNLOCK(diff_lock); 
25d. BARRIER(bar1, nprocs); /*ensure all reach here before checking if done*/ 
25e. if (diff/(n*n) < TOL) then done = 1; /*check convergence; all get 

same answer*/ 
25f. BARRIER(bar1, nprocs); 
26. endwhile 
27. end procedure 
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° complete an iteration before any process tests for 
convergence.  Why? 

° test for convergence before any process starts the next 
iteration.  Why? 

 Notice the use of barrier synchronization to achieve this. 

 What could happen if the barrier at Line 16a was removed? 

 What could happen if the barrier at Line 25d was removed? 

 What could happen if the barrier at Line 25f was removed? 

• Locks must be plsaced around updates to diff, so that no two 
processors update it at once.  Otherwise, inconsistent results 
could ensue. 

 p1 p2 

 r1  diff  { p1 gets 0 in its r1} 

  r1  diff { p2 also gets 0} 

 r1  r1+r2  { p1 sets its r1 to 1} 

  r1  r1+r2 { p2 sets its r1 to 1} 

 diff  r1  { p1 sets diff  to 1} 
  diff  r1 { p2 also sets diff to 1} 

If we allow only one processor at a time to access diff, we can avoid 
this race condition. 

What is one performance problem with using locks?   
 
 

Note that at least some processors need to access diff as a non-local 
variable. 

What is one technique that our shared-memory program uses to 
diminish this problem of serialization?   
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Message-passing model 

The program for the message-passing model is also similar, but 
again there are several differences. 

 There’s no shared address space, so we can’t declare array A 
to be shared. 

 Instead, each processor holds the rows of A that it is working 
on. 

 The subarrays are of size (n/nprocs + 2)  (n + 2). 
 This allows each subarray to have a copy of the boundary rows 

from neighboring processors.  Why is this done?   
 

 These ghost rows must be copied explicitly, via send and 
receive operations. 

 Note that send is not synchronous; that is, it doesn’t make the 
process wait until a corresponding receive has been executed. 

 What problem would occur if it did?   
 
 

• Since the rows are copied and then not updated by the 
processors they have been copied from, the boundary values 
are more out-of-date than they are in the sequential version of 
the program. 

 This may or may not cause more sweeps to be needed for 
convergence. 

• The indexes used to reference variables are local indexes, not 
the “real” indexes that would be used if array A were a single 
shared array. 
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There are one or more typos in the if statements involving pids.  
Which statement(s)?  What are the error(s)? 

1. int pid, n, b;        /*process id, matrix dimension and number of  
              processors to be used*/ 
2. float **myA; 
3. main()  
4. begin 
5.   read(n);   read(nprocs);  /*read input matrix size and number of processes*/ 
8a.   CREATE (nprocs-1, Solve); 
8b.   Solve();        /*main process becomes a worker too*/ 
8c.   WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/ 
9. end main 
 
10. procedure Solve() 
11. begin  
13.  int i,j, pid, n’ = n/nprocs, done = 0; 
14.  float temp, tempdiff, mydiff = 0;  /*private variables*/ 
6.  myA  malloc(a 2-d array of size [n/nprocs + 2] by n+2); 
              /*my assigned rows of A*/ 
7. initialize(myA);        /*initialize my rows of A, in an unspecified way*/ 
 
15. while (!done) do 
16.   mydiff = 0;       /*set local diff to 0*/  
16a.  if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW); 
16b.  if (pid != nprocs-1) then 
    SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW); 
16c.  if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-1,ROW); 
16d.  if (pid != nprocs-1) then  
    RECEIVE(&myA[n’+1,0],n*sizeof(float), pid+1,ROW); 
              /*border rows of neighbors have now been copied 
              into myA[0,*] and myA[n’+1,*]*/ 
17.   for i  1 to n’ do    /*for each of my (nonghost) rows*/  
18.    for j  1 to n do   /*for all nonborder elements in that row*/ 
19.    temp = myA[i,j];     
20.    myA[i,j] = 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] + 
21.     myA[i,j+1] + myA[i+1,j]);      
22.    mydiff += abs(myA[i,j] - temp);      
23.    endfor 
24.   endfor 
              /*communicate local diff values and determine if 
              done; can be replaced by reduction and broadcast*/ 
25a.   if (pid != 0) then      /*process 0 holds global total diff*/ 
25b.    SEND(mydiff,sizeof(float),0,DIFF);  
25c.    RECEIVE(done,sizeof(int),0,DONE);  
25d.   else            /*pid 0 does this*/ 
25e.    for i  1 to nprocs-1 do  /*for each other process*/  
25f.     RECEIVE(tempdiff,sizeof(float),*,DIFF);  
25g.     mydiff += tempdiff;     /*accumulate into total*/ 
25h.    endfor  
25i   if (mydiff/(n*n) < TOL) then   done = 1; 
25j.    for i  1 to nprocs-1 do  /*for each other process*/  
25k.     SEND(done,sizeof(int),i,DONE);  
25l.    endfor 
25m.  endif 
26. endwhile 
27. end procedure 
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Data parallel algorithms1 

 (Guy Steele):  The data-parallel programming style is an approach to 
organizing programs suitable for execution on massively parallel 
computers. 

In this lecture, we will— 

• characterize the    programming style, 

• examine the building blocks used to construct data-parallel 
programs, and 

• see how to fit these building blocks together to make useful 
algorithms. 

All programs consist of code and data put together.  If you have more 
than one processor, there are various ways to organize parallelism. 

• Control parallelism: Emphasis is on extracting parallelism 
by orienting the program’s organization around the 
parallelism in the code. 

•    parallelism: Emphasis is on organizing programs to 
extract parallelism from the organization of the data. 

With data parallelism, typically all the processors are at roughly the 
same point in the program. 

Control and data parallelism vs. SIMD and MIMD. 

• You may write a data-parallel program for a MIMD 
computer, or 

• a control-parallel program which is executed on a SIMD 
computer. 

 Emphasis in this talk will be on styles of organizing programs.  It 
becomes an engineering issue whether it is appropriate to organize 
the hardware to match the program. 

 
1Video © 1991, Thinking Machines Corporation.  This video is available from University Video 
Communications, http://www.uvc.com. 
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The sequential programming style, typified by C and Pascal, has 
building blocks like— 

• scalar arithmetic operators, 
• control structures like if … then … else, and 
• subscripted array references. 

The programmer knows essentially how much these operations cost.  
E.g., addition and subtraction have similar costs; multiplication may 
be more expensive. 

To write data-parallel programs effectively, we need to understand 
the cost of data-parallel operations. 

• Elementwise operations (carried on independently by 
processors; typically    operations and tests). 

• Conditional operations (also elementwise, but some 
processors may not participate, or act in various ways). 

• Replication 

•     

• Permutation 

• Parallel prefix (scan)  
 

An example of an elementwise operation: 

Elementwise addition 

C = A + B 

 

3

6

9

1

2

3

4

1

5

5

3

8

2

0

2

1

1

2

3

1

4

2

5

7 +
 

Elementwise test 

if (A > B) 
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The results can be used to “conditionalize” future operations: 

if (A > B) C = A + B 

3

6

0

1

2

0

4

1

5

5

3

8

2

0

2

1

1

0

3

1

4

2

5

0 +
 

The set of bits that is used to conditionalize the operations is 
frequently called a condition mask or a context.  Each processor can 
perform different computations based on the data it contains. 

Building blocks 

Communications operations:  

•    : Get a single value out to all processors.  This 
operation happens so frequently that is worthwhile to 
support in hardware.  It is not unusual to see a hardware 
bus of some kind. 

• Spreading (nearest-neighbor grid).  One way is to have 
each row copied to its nearest neighbor. 
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3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2

3 6 2 5 3 4 9 2  

A better way is to use a copy-scan: 

• On the first step, the data is copied to the row that is 
directly below. 

• On the second step, data is copied from each row that 
has the data to the row that is two rows below. 

• On the third step, data is copied from each row to the 
row that is four rows below. 

 
 In this way, the row can be copied in logarithmic time, if we 

have the necessary interconnections. 

•    —essentially the inverse of broadcasting.  
Each processor has an element, and you are trying to 
combine them in some way to produce a single result. 

6 1 4 7 3 1 3 2

+

27

 

 Summing a vector in logarithmic time: 
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x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 

x 0 x 2 x 4 x 6 Σ 0 
1 Σ 2

3 Σ 4
5 Σ 6 

7 

x 0 x 2 x 4 x 6 Σ 0 
1 Σ 0

3 Σ 4
5 Σ 4 

7 

x 0 x 2 x 4 x 6 Σ 0 
1 Σ 0

3 Σ 4
5 Σ 0 

7 
 

 Most of the time during the course of this algorithm, most 
processors have not been busy. 

 So while it is fast, we haven’t made use of all the 
processors. 

 Suppose you don’t turn off processors; what do you get?  
Vector sum-prefix (sum-scan). 

  

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7 

Σ 0 
1 Σ 2

3 Σ 4
5 Σ 6 

7 

Σ 0 
1 Σ 0

3 Σ 2
5 Σ 4 

7 

Σ 0 
1 Σ 0

3 Σ 0
5 Σ 0 

7 

Σ 0 
2 Σ 3 

4 Σ 5 
6 Σ 0 

0 

Σ 0 
0 

Σ 0 
0 

Σ 0 
2 Σ 1 

4 Σ 3 
6 

Σ 0 
2 Σ 0 

4 Σ 0 
6 

 

 Each processor has received the sum of what it contained, 
plus all the processors preceding it. 

 We have computed the sums of all prefixes—initial 
segments—of the array. 

 This can be called the checkbook operation; if the numbers 
are a set of credits and debits, then the prefixes are the set 
of running balances that should appear in your checkbook. 

•    .  We wish to assign a different number to 
each processor. 
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1 1 1 1 1 1 1 1

+

1

1 2 3 4 5 6 7 8

Broadcast

Sum-prefix

 

• Regular permutation. 

Shift 

A B C D E F G H

A B C D E F GH  

 Of course, one can do shifting on two-dimensional arrays 
too; you might shift it one position to the north. 

 Another kind of permutation is an odd-even swap: 

 

A B C D E F G H

B D F HA C E G  

 Distance 2k swap: 

  

A B C D E F G H

C A G ED B H F  

 Some algorithms call for performing irregular permutations 
on the data. 

 A B C D E F G H

C E H FB A D G
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 The permutation depends on the data.  Here we have 
performed a sort.  (Real sorting algorithms have a number 
of intermediate steps.) 

Example: image processing 

Suppose we have a rocket ship and need to figure out where it is. 

Some of the operations are strictly local.  We might focus in on a 
particular region, and have each processor look at its values and 
those of its neighbor. 

This is a local operation; we shift the data back and forth and have 
each processor determine whether it is on a boundary. 

When we assemble this data and put it into a global object, the 
communication patterns are dependent on the data; it depends on 
where the object happened to be in the image. 

Irregularly organized data 

Most of our operations so far were on arrays, regularly organized 
data. 

We may also have operations where the data are connected by 
pointers. 

In this diagram, imagine the processors as being in completely 
different parts of the machine, known to each other only by an 
address. 

       doubling: 

 

I originally thought that nothing could be more essentially sequential 
than processing a linked list.  You just can’t find the third one without 
going through the second one.  But I forgot that there is processing 
power at each node. 

The most important technique is pointer doubling.  This is the pointer 
analogue of the spreading operation we looked at earlier to make a 
copy of a vector into a matrix in a logarithmic number of steps. 
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In the first step, each processor makes a copy of the pointer it has to 
its neighbor. 

 

In the rest of the steps, each processor looks at the processor it is 
pointing to with its extra pointer, and gets a copy of its pointer. 

In the first step, each processor has a pointer to the next processor.  
But in the next step, each processor has a pointer to the processor 
two steps away in the linked list. 

 

In the next step, each processor has a pointer to the pointer four 
processors away (except that if you fall off the end of the chain, you 
don’t update the pointer). 

Eventually, in a logarithmic number of steps, each processor has a 
pointer to the end of the chain. 

 

How can this be used?  In partial sums of a linked list. 

x 0 x 1 x 2 x 3 x 4 x 5 x 6 x 7
 

At the first step, each processor takes the pointer to its neighbor. 

At the next step, each processor takes the value that it holds, and 
adds it into the value in the place pointed to: 

Σ 0 
1 Σ 2 

3 Σ 4 
5 Σ 6 

7 Σ 0 
2 Σ 3

4 Σ 5 
6 Σ 0 

0 

 

Now we do this again: 
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Σ 0 
1 Σ 0 

3 Σ 2 
5 Σ 4 

7 Σ 0 
0 Σ 0 

2 Σ 1
4 Σ 3 

6 

 

And after the third step, you will find that each processor has gotten 
the sum of its own number plus all the preceding ones in the list. 

Σ 0 
1 Σ 0 

3 Σ 0 
5 Σ 0 

7 Σ 0 
0 Σ 0 

2 Σ 0
4 Σ 0 

6 

 

Speed vs. efficiency:  In sequential programming, these terms are 
considered to be synonymous.  But this coincidence of terms comes 
about only because you have a single processor. 

In the parallel case, you may be able to get it to go fast by doing extra 
work. 

Let’s take a look at the serial vs. parallel algorithm for summing an 
array. 

 -Reduction 

 Serial Parallel 

Processors 1 N 

Time steps N–1 log N 

Additions N–1 N–1 

Cost N–1 N log N 

Efficiency 1      
1

log N  

 
 Sum – Prefix 

 Serial Parallel 

Processors 1 n 

Time steps n–1 log n 

Additions n–1 n (log n–1) 
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Cost n–1 n log n 

Efficiency 1  
log n–1

log n   

The serial version of sum–prefix is similar to the serial version of 
sum–reduction, but you save the partial sums.  You don’t need to do 
any more additions, though. 

In the parallel version, the number of additions is much greater.  You 
use n processors, and commit log n time steps, and nearly all of them 
were busy. 

As n gets large, the efficiency is very close to 1.  So this is a very 
efficient algorithm.  But in some sense, the efficiency is bogus; we’ve 
kept the processors busy doing more work than they had to do.  Only 
n–1 additions are really required to compute sum–prefix.  But n(log 
n–1) additions are required to do it fast. 

Thus, the business of measuring the speed and efficiency of a 
parallel algorithm is tricky.  The measures I used are a bit naïve.  We 
need to develop better measures. 

Exercise:  Submit your answers here. 

Calculate the speedup of summing a vector using copy-scan (turning 
off the processors that are not in use). 

 How long does it take to sum the vector serially?   

 How long does it take to sum it using copy-scan?  

 What is the speedup?  

What is the efficiency (speedup ÷ # of processors) of summing a 
vector with copy-scan?  

In the parallel version of summing an array via sum-prefix, a “bogus” 
efficiency is mentioned.  What would be the “non-bogus” efficiency of 
the same algorithm?   
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Putting the building blocks together 

Let’s consider matrix multiply. 

 

One way of doing this with a brute-force approach is to use n3 
processors. 

source2

source1
result

n

n

n

 

1.  Replicate.  The first step is to 
make copies of the first source 
array, using a spread operation. 

 

2.  Replicate.  Then we will do the 
same thing with the second 
source, spreading those down the 
cube. 

So far, we have used O(log n) 
time. 

  

3.  Elementwise multiply.  n3 
operations are performed, one by 
each processor. 

 
4.  Perform a parallel sum operation, 
using the doubling-reduction method. 

sum  
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We have multiplied two matrices in  
O(log n) time, but at the cost of using n3 processors. 

Brute force: n3 processors O(log n) time 

Also, if we wanted to add the sum to one of the matrices, it’s in the 
wrong place, and we would incur an additional cost to move it. 

Cannon’s method 

There’s another method that only requires n2 processors.  We take 
the two source arrays and put them in the same n2 processors.  The 
result will also show up in the same n2 processors. 

We will pre-   the two source arrays. 

• The first array has its rows skewed by different amounts. 

skew

 

• The columns of the second array are skewed. 

skew

 

The two arrays are overlaid, and they 
then look like this: 

This is a systolic algorithm; it rotates 
both of the source matrices at the same 
time. 

 

• The first source matrix is rotated horizontally. 
• The second source matrix is rotated vertically. 
 

 

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 70 

  

At the first time step, the 2nd element of the first row and the 2nd 
element of the first column meet in the upper left corner.  They are 
then multiplied and accumulated. 

At the second time step, the 3rd element of the first row and the 3rd 
element of the first column meet in the upper left corner.  They are 
then multiplied and accumulated. 

At the third time step, the 4th element of the first row and the 4th 
element of the first column meet in the upper left corner.  They are 
then multiplied and accumulated. 

At the fourth time step, the 1st element of the first row and the 1st 
element of the first column meet in the upper left corner.  They are 
then multiplied and accumulated. 

The same thing is going on at all the other points of the matrix. 

The     serves to cause the correct elements of each row 
and column to meet at the right time. 

Cannon’s method: n2 processors O(n) time 

An additional benefit is that the matrix ends up in the right place. 

Labeling regions in an image 

Let’s consider a really big example. 

Instead of the rocket ship earlier in the lecture, we’ll consider a 
smaller region.  (This is one of the problems in talking about data-
parallel algorithms.  They’re useful for really large amounts of data, 
but it’s difficult to show that on the screen.) 
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We have a number of regions in 
this image.  There’s a large 
central “green” region, and a “red-
orange” region in the upper right-
hand corner.  Some disjoint 
regions have the same color. 

We would like to compute a result 
in which each region gets 
assigned a distinct number.  

We don’t care which number gets  
assigned, as long as the numbers are distinct (even for regions of the 
same color. 

0 0 2 2 2 5 5 5

8 0 0 2 2 2 2 5

8 8 0 19 2 2 2 23

8 8 19 19 19 19 23 23

8 19 19 19 19 19 23 23

8 19 19 19 19 23 23 23

8 49 49 19 19 23 23 23

49 49 49 49 60 60 60 60  

For example, here the 
central green region has 
had all its pixels assigned 
the value 19. 
 
The squiggly region in the 
upper left corner has 
received 0 in all its pixels. 
 
The region in the upper 
right, even though the 
same color as the central 
green region, has 
received a different value. 
 

Let’s see how all the building blocks we have discussed can fit 
together to make an interesting algorithm. 
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First, let’s assign each 
processor a different number. 

Here I’ve assigned the 
numbers sequentially across 
the rows, but any distinct 
numbering would do. 

We’ve seen how the enumera-
tion technique can do this in a 
logarithmic number of time 
steps. 

0 1 2 3 4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23

24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39

40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55

56 57 58 59 60 61 62 63  

 

Next, we have each of the 
pixels examine the values 
of its eight neighbors. 

This is easily accomplished 
using regular   —
namely, shifts of the matrix. 

We shift it up, down, left, 
right, to the northeast, 
northwest, southeast, and 
southwest. 

This is enough for each processor to do elementwise computation 
and decide whether it is on the border. 

 (There are messy details, but we won’t discuss them here, since they 
have little to do with parallelism.) 

The next computation will be carried out only by processors that are 
on the borders (an example of conditional operation). 
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We have each of the processors 
again consider the pixel values 
that came from its neighbors, 
and 

inquire again, using shifting, if 
each of its neighbors are border 
elements. 

This is enough information to 
figure out which of your 
neighbors are border elements in 
the same region, so you can 
construct pointers to them.  

 

0 1 2 4 5 6

8 9 10 11 13 14 15

17 18 19 20 21 22 23

25 26 28 29 30

32 33 37 38

40 41 42 44 45

48 49 50 51 52 53 54 55

56 59 60 61 62 63  

Now we have stitched 
together the borders in a 
linked list. 

We now use the pointer-
doubling algorithm.  Each 
pixel on the borders 
considers the number that 
it was assigned in the 
enumeration step. 

We use the pointer-
doubling algorithm to do a 
reduction step using the 
min operation. 

0 0 2 2 5 5

8 0 0 2 2 2 2 5

8 0 19 2 2 2 23

8 19 19 19 23

8 19 19 23

8 19 19 19 23

8 49 49 19 19 23 23 23

49 49 60 60 60 60  

Each linked list performs 
pointer-doubling around 
that list, and determines 
which number is the 
smallest in the list. 

Then another pointer-
doubling algorithm makes 
copies of that minimum all 
around the list. 
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Finally, we can use     operation, not on linked lists, but by 
operating on the columns (or the rows) to copy the processor labels 
from the borders to the rows. 

Other items, particularly those 
on the edge, may need the 
numbers propagated up 
instead of down.  So you do a 
scan in both directions. 

The operation used is a non-
commutative operation that 
copies the old number from 
the neighbor, unless it comes 
across a new number. 

0 0 2 2 2 5 5 5

8 0 0 2 2 2 2 5

8 8 0 19 2 2 2 23

8 8 19 19 19 19 23 23

8 19 19 19 19 19 23 23

8 19 19 19 19 23 23 23

8 49 49 19 19 23 23 23

49 49 49 49 60 60 60 60

scan

 

This is known as Lim’s algorithm. 

 Region labeling: O(n2) processors. O(log n) time 

 (Each of the steps was either constant time or O(log n) time.) 

Data-parallel programming makes it easy to organize operations on 
large quantities of data in massively parallel computers. 

It differs from sequential programming in that its emphasis is on 
operations on entire sets of data instead of one element at a time. 

You typically find fewer loops, and fewer array subscripts. 

On the other hand, data-parallel programs are like sequential 
programs, in that they have a single thread of control. 

In order to write good data-parallel programs, we must become 
familiar with the necessary building blocks for the construction of 
data-parallel algorithms. 

With one processor per element, there are a lot of interesting 
operations which can be performed in constant time, and other 
operations which take logarithmic time, or perhaps a linear amount of 
time. 
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This also depends on the connections between the processors.  If the 
hardware doesn’t support sufficient connectivity among the 
processors, a communication operation may take more time than 
would otherwise be required. 

Once you become familiar with the building blocks, writing a data-
parallel program is just as easy (and just as hard) as writing a 
sequential program.  And, with suitable hardware, your programs may 
run much faster. 

Exercise:  Run through Lim’s algorithm on the grid given here. 

Questions and answers:  [not shown during class] Question: (Bert 
Halstead):  Do you ever get into problems when you have highly 
data-dependent computations, and it’s hard to keep more than a 
small fraction of the processors doing the same operation at the 
same time? 

Answer:  Yes.  That’s one reason for making the distinction between 
the data-parallel style and    hardware.  The best way to 
design a system to give you the most flexibility without making it 
overly difficult to control is, I think, still an open research question. 

Question (Franklin Turback): Your algorithms seem to be based on 
the assumption that you actually have enough processors to match 
the size of your problem.  If you have more data than processors, it 
seems that the logarithmic time growth is no longer justified. 

Answer:  There’s no such thing as a free lunch.  Making the problem 
bigger makes it run slower.  If you have a much larger problem that 
won’t fit, you’re going to have to buy a larger computer. 

Question:  How about portability of programs to different machines? 

Answer:  Right now it’s very difficult, because so far, we haven’t 
agreed on standards for the right building blocks to support.  Some 
architectures support some building blocks but not others.  This is 
why you end up with non-portabilities of efficiencies of running times. 

Question:  For dealing with large sparse matrices, there are methods 
that we use to reduce complexity.  If this is true, how do you justify 
the overhead cost of parallel processing? 
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Answer:  Yes, that is true.  It would not be appropriate to use that kind 
of algorithm on a sparse matrix, just as you don’t use the usual 
sequential triply-nested loop. 

    processing on a data-parallel computer calls for 
very different approaches.  They typically call for the irregular 
communication and permutation techniques that I illustrated. 

Question:  What about non-linear programming and algorithms like 
branch-and-bound? 

Answer:  It is sometimes possible to use data-parallel algorithms to 
do seemingly unstructured searches, as on a game tree, by 
maintaining a work queue, like you might do in a more control-
parallel, and at every step, taking a large number of task items off the 
queue by using an enumeration step and using the results of that 
enumeration to assign them to the processors. 

This may depend on whether the rest of the work to be done is 
sufficiently similar.  If it’s not, then control parallelism may be more 
appropriate. 

Question:  With the current software expertise in 4GLs for sequential 
machines, do you think that developing data-parallel programming 
languages will end up at least at 4GL level? 

Answer:  I think we are now at the point where we know how to 
design data-parallel languages at about the level of expressiveness 
as C, Fortran, and possibly Lisp.  I think it will take awhile before we 
can raise our level of understanding to the level we need to design 
4GLs. 
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Parallel access to linked data structures 

[Solihin Ch. 4]  Answer the questions below. 

Name some linked data structures.  Linked lists, trees, graphs, hash 
tables. 

What operations can be performed on all of these structures?  
Insertion, deletion, search. 

Why is it hard to parallelize these operations?  Because pointer-
chasing involves frequent loop-carried dependences. 

Explain how the following code illustrates such a dependence. 

void addValue(pIntList pList, int key, int x) { 
   pIntListNode p = pList->head;  
   while (p != NULL) {  
     if (p->key == key)  
       S1: p->data = p->data + x;  
     S2: p = p->next;  
 }  
} 

In the notation introduced in Lecture 9, how would the dependence 
be written? 

S1[i] T S1[i+1],  S2[i] T S2[i+1], except that there is 
no i in the program. 

If we just look at the loops in an “LDS” program, we won’t find any 
parallelism to be exploited. 

So, where can we find the opportunity to execute anything in parallel?  
The “algorithm level”—paralellism between the operations that are 
performed on the LDS. 

Conceptually, we can allow several operations to be performed in 
parallel.  What kind of operations?  Insertion, deletion, search, etc. 

But how do we decide which operations can be performed in parallel? 
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Correctness of parallel LDS operations 

Serializability:  A parallel execution of a group of operations (or 
primitives) is said to be serializable if there is some sequence of 
operations (or primitives) that produce an identical result. 

Suppose a node insertion i1 and a node deletion d1 are performed in 
parallel.  The outcome must be equivalent to either 

 i1 followed by d1, or 
 d1 followed by i1. 

Conflict between two insertions 

Let’s look at 
the simple 
case of a 
singly-linked 
list. 

Suppose 
two items 
are inserted 
in parallel: 
insert both 4 
and 5. 

Serializable 
outcomes:  

insert 4, 
then insert 5 

or insert 5, 
then insert 4 

In any case, 
both nodes 
4 and 5 
must be in 
the list at the 
end of 
execution 
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What could happen if the operations are not parallelized correctly?  
Node 4 could be lost, or node 5 could be lost. 

Conflict between an insertion and a deletion 

 
Serializable 
outcome: 

insert 4, then 
delete 5, or 

delete 5, 
then insert 4 

in both 
cases, at the 
end of 
execution, 
node 4 is in 
the list, but 
node 5 is not 
in the list 

 

 

In the case shown, node 4 is lost.  What would be a sequence that 
produces another incorrect result?  What would happen with this 
sequence?  (You may use this worksheet.)   

Conflict between an insertion and a search 
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Suppose we 
attempt 

insert 5, then 
search 6 

or, search 6, 
then insert 5 

in both 
cases, at the 
end of 
execution,  

 5 must be 
in the list, 
and  

 6 must be 
found 

 
 
 

 
Depending 

on when the insertion code is executed, 
 
 node 6 will be found, or 

 node 6 may not be found, and an uninitialized link may be 
followed. 

Conflict between a deletion and a search 

 Deletion and search 

o delete 5, then search for 5  
o search for 5, then delete 5 

 Possible outcomes 

o Node 5 may be found or not found 
o Node 5 is deleted from the list 
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What, if anything, is the problem with these outcomes?  
Nothing; the operations are serializable. 

 
Main Observations 

 Parallel execution of two operations that affect a common node, 
in which at least one operation involves writing to the node, can 
produce conflicts that lead to non-serializable outcome.  

 Under some circumstances, a serializable outcome may still be 
achieved, despite the conflicts mentioned above.  

 Conflicts can also occur between LDS operations and memory-
management functions such as allocation and deallocation.  

Parallelization strategies 

 Parallelization among readers 

o Very simple 
o Works well if structure is modified infrequently 
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 Global lock approach 

o Relatively simple 
o Parallel traversal, followed by sequential list modifications 

 Fine-grain lock approach 

o A lock is associated with each node. 
o Each operation locks only nodes that need to be 

accessed exclusively. 
o Complex: Deadlock can occur; memory allocation and 

deallocation become more complex 

Parallelization among readers 

 Basic idea 

o (Read-only) operations that do not modify the list can 
execute in parallel. 

o (Write) operations that modify the list execute sequentially 

 How to enforce 

o A read-only operation acquires a read lock 
o A write operation acquires a write lock 

 Construct a lock-compatibility table 

Already-granted 
lock 

Read lock 
requested 

Write lock 
requested 

Read lock Yes No 

Write lock No No 

Example 

IntListNode_Search(int x) 
{ 
  acq_read_lock(); 
  … 
    … 
    … 
  rel_read_lock(); 
} 

IntListNode_Insert(node *p) 
{ 
  acq_write_lock(); 
  … 
  … 
  … 
  rel_write_lock(); 
} 
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Global-lock approach 

 Each operation logically has two steps 

o Traversal 

 Node insertion: Find the correct location for the node 
 Node deletion: Find the node to delete 
 Node search: Find the sought-for node 

o List modification 

 Basic idea: perform the traversal in parallel, but modify the list 
in a critical section, i.e., modify the list between the time that a 
write lock is acquired and when it is released (that’s what a c.s. 
is). 

 Pitfall 
o The list may have changed by the time the write-lock is 

acquired, 
o so the assumptions must be re-validated. 

Example 

IntListNode_Insert(node *p) 
{ 
  … 
  /* perform traversal */ 
  … 
  acq_write_lock(); 
  /* then check validity:  
    nodes still there?  
    link still valid? */ 
  /* if not valid, repeat traversal */ 
  /* if valid, modify list */ 
  … 
  rel_write_lock(); 
} 

Fine-grain locking approach 

 Associate each node with a lock (read, write). 
 Each operation locks only needed nodes. 
 (Read and write) operations execute in parallel except when 

they conflict on some nodes.  Fill in the blanks below. 
o Nodes that will be modified are write-locked. 
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o Nodes that are read and must remain unchanged are 
read-locked. 

 Pitfall: Deadlock becomes possible. 
o Suppose one operation locks node 1 and then needs to 

lock node 2, while another operation locks node 2 and 
then needs to lock node 1. 

o Then neither operation can complete before the other 
operation frees the lock it is holding. 

 Deadlocks can be prevented by imposing a global lock-
acquisition order. 

Example 

void insert(pIntList pList, int x){ 
  int succeed;  
  … /* traversal code to find where to insert */ 

  /* insert the node at head or between prev & p */ 
  succeed = 0; 
  do { 
    acq_write_lock(prev); 
    acq_read_lock(p); 
    if (prev->next != p || prev->deleted || p->deleted) 
    { 
   rel_write_lock(prev); 
    rel_read_lock(p); 
    … /* repeat traversal */ 
 } 
 else 
   succeed = 1; 
  } while (!succeed); 

  /* prev and p are now valid, so insert node */ 
  newNode->next = p; 
  if (prev != NULL) 
    prev->next = newNode; 
  else 
    pList->head = newNode; 
  rel_write_lock(prev); 
  rel_read_lock(p); 
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} 

Questions 

What do the tests prev->deleted and p->deleted mean?  They 
ask whether the node has been deleted (by checking its deleted 
field); nodes are marked deleted rather than deallocated. 

Why is garbage collection used, rather than explicit deletion?  
Because nodes may be deleted only when they are not involved in 
any operation.  This would require keeping reference counts on all 
the nodes, which is too expensive. 

The delete operation is similar; code that is the same is shown in 
green. 

void delete(pIntList pList, int x){ 
  int succeed;  
  … /* traversal code to find node to delete */ 
 
  /* node has been found; perform the deletion */ 
  succeed = 0; 
  do { 
    acq_write_lock(prev); 
    acq_write_lock(p); 
    if (prev->next != p || prev->deleted || p->deleted) 
    { 
   rel_write_lock(prev); 
    rel_write_lock(p); 
    … /* repeat traversal; return if not found */ 
 } 
 else 
   succeed = 1; 
  } while (!succeed); 

  /* prev and p are now valid, so delete node */ 
  if (prev == NULL) { /* delete head node */ 
    acq_write_lock(pList); 
    pList->head = p->next; 
    rel_write_lock(pList); 
  } 
  else /* delete non-head node */ 
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    prev->next = p->next; 
  p->deleted = 1; /*don’t deallocate; mark deleted*/ 
  rel_write_lock(prev); 
  rel_write_lock(p); 
} 
 
 


