
1

CSC/ECE 506: Architecture of Parallel Computers
Problem Set 2

Initial Submission Due: Tuesday, March 5, 2024
Reflection Due: Tuesday, March 19, 2024

There will be two submission deadlines for this problem set. For the first submission deadline, you should
turn in solutions to all the problems. Then the “official” solutions will be distributed. For the second
submission deadline, you should turn in corrections of your work, and explanations of anything you got
wrong. The second submission is the one that will be graded.

There are 80 points on this problem set.

Problem 1. (20 points, 4, 4, 4, & 8 per part) For parts (a) to (c), assume the address width is 16 bits.

(a) If the block offset is 8 bits and 8 bits are tag bits, then what kind of cache mapping (direct mapped, set
associative or fully associative) would it be?

(b) If the cache size is 8 MB, and has an offset of 8 bits, with 5 index bits and the remaining bits being tag
bits, then what kind of cache mapping (direct mapped, set associative or fully associative) would it be?

(c) Suppose the cache size is 8 MB, with an offset of 8 bits, 3 index bits and the remaining bits tag bits,
then what kind of cache mapping (direct mapped, set associative or fully associative) would it be?

(d) To which set will a main-memory address of 974516 be mapped, assuming that the cache contains 32
lines, with 16 bytes per cache block, assuming the following associativities?

(i) direct mapped
(ii) two-way set associative
(iii) four-way set associative

 (iv) eight-way set associative?

Problem 2. (20 points) This problem relates to a system that has four processors (P1, P2, P3, and P4),
each with a private L1 cache and a shared main memory. Memory location x is initialized to a decimal

value of 1000. A logical arrangement of the system is shown below.

P1
P2

P4

Cache Cache Cache

Interconnection Network

Main Memory
 1000

 x

Cache

P3

2

The system does not use a cache-coherence protocol.

The pseudo-assembly level code given below shows three threads run on processors P1, P2, P3 and P4
respectively.

Thread 1(P1) Thread 2 (P2) Thread 3 (P3) Thread 4 (P4)
 ld r2,x // r2=x
 ld r3,x // r3=x

 ld r5, x // r5=x
 ld r7, x // r7=x

 sub r1,r2,r3 // r1=r2-r3
 st x, r1 // x=r1

 k: add r7,r7,100
 //r7=r7+100,
 k is the label.
 ld r4, x // r4 =x
 ld r6, x // r6=x
 ld r8, x // r8=x
 bnz r8,k
 //branch to k,
 if r8 is non zero

(a) Fill in the following table for the above sequence of operations, assuming write-back caches are

used.

Control Flow Instruction Possible Outcome Yes/No

bnz r8,k Will it branch to instruction 'k'

P3

P1 P2 P3 P4 r1 r2 r3 r4 r5 r6 r7 r8

Initially - - - - 1000 - - - - - - - -

ld r2,x

ld r3,x

ld r5, x

ld r7, x

sub r1,r2,r3

st x, r1

add r7,r7,100

ld r4, x

ld r6, x

ld r8,x

P4

Value of registersValue of 'x' at different locations

Action
Cache

Memory
P1 P2

3

(b) Fill in the following table for the above sequence of operations, assuming write-through caches

were used.

(c) Does a write-back cache provide a coherent view of the memory location x? Please explain your

answer.

(d) Does using write through cache provide a coherent view of the memory location x? What

improvement does it provide, when compared to write back caches? Please explain your answer.

Problem 3. (15 points) Here is the code for an algorithm commonly used in image-processing
applications.

Consider an image f with width=ImageWidth and height=ImageHeight. f is a 2D grid of pixels. k is a
kernel of width=2w+1 and height=2h+1 where (2w+1) < ImageWidth and (2h+1) < ImageHeight. The
image f is processed using the kernel k to produce a new image g as shown:

for y = 0 to ImageHeight do
 for x = 0 to ImageWidth do
 sum = 0
 for i= -h to h do
 for j = –w to w do
 sum = sum + k[j,i] * f [x – j, y – i]

 end for
 end for
 g[x y] = sum
 end for
end for

(a). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if the for y loop is
parallelized.

Read only R/W non-conflicting R/W conflicting

P3

P1 P2 P3 P4 r1 r2 r3 r4 r5 r6 r7 r8

Initially - - - - 1000 - - - - - - - -

ld r2,x

ld r3,x

ld r5, x

ld r7, x

sub r1,r2,r3

st x, r1

add r7,r7,100

ld r4, x

ld r6, x

ld r8,x

P4

Value of registersValue of 'x' at different locations

Action
Cache

Memory
P1 P2

Control Flow Instruction Possible Outcome Yes/No

bnz r8,k Will it branch to instruction 'k'

4

(b). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if (only) the for i loop is
parallelized. Assume that the for i tasks for the previous value of x must complete before the for i tasks of
the current value of x are started.

Read only R/W non-conflicting R/W conflicting

(c). Identify the read-only, R/W non-conflicting and R/W conflicting variables, if the for i loop is
parallelized. Assume that the for i tasks for the previous value of x do not have to complete before the for
i tasks of the current value of x are started.

Read only R/W non-conflicting R/W conflicting

Problem 4. (25 points) Consider a sequence of integers. A subsequence of these integers is a “zerosum”

if the sum of all integers in the subsequence is zero. The task is to find the total number of zerosums for

some given sequence.

For example, given the sequence

2, 1, 0, –3, 1

an example of a zerosum would be the sequence from the 1st element to the 4th element, since

2 + 1 + 0 + –3 = 0

Consider the parallel approach to finding zerosums in which task t tries to find zerosum subsequences

starting at the t th element of the given sequence. The following questions relate to assigning these tasks

to different processing elements.

(a) Would block assignment be a good choice for this problem? Explain.

(b) Consider cyclic assignment where there are n/2 processing elements to count zerosums in a

sequence of n integers. What is the minimum number of integers a processor will need to sum? The

maximum?

(c) Briefly describe one advantage and disadvantage of dynamic assignment.

(d) Why would 2D block partitioning be unsuitable for this task?

