
Introduction to CUDA

- Data Parallelism and Threads

Lesson 1.4

Objective

• To learn about data parallelism and

the basic features of CUDA C, a

heterogeneous parallel programming

interface that enables exploitation

of data parallelism

• Hierarchical thread organization

• Main interfaces for launching

parallel execution

• Thread index to data index mapping

2

A[0]vector A

vector B

vector C

A[1] A[2] A[N-1]

B[0] B[1] B[2]

…

… B[N-1]

C[0] C[1] C[2] C[N-1]…

+ + + +

Data Parallelism - Vector Addition Example

3

CUDA /OpenCL – Execution Model

• Heterogeneous host+device application C program

• Serial parts in host C code

• Parallel parts in device SPMD kernel C code

Serial Code (host)

. . .

. . .

Parallel Kernel (device)

KernelA<<< nBlk, nTid >>>(args);

Serial Code (host)

Parallel Kernel (device)

KernelB<<< nBlk, nTid >>>(args);

4

From Natural Language to Electrons

Natural Language (e.g, English)

Algorithm

High-Level Language (C/C++…)

Instruction Set Architecture

Microarchitecture

Circuits

Electrons

©Yale Patt and Sanjay Patel, From bits and bytes to gates

and beyond

5

Compiler

6

The ISA

• An Instruction Set Architecture (ISA)

is a contract between the hardware

and the software.

• As the name suggests, it is a set of

instructions that the architecture

(hardware) can execute.

7

A program at the ISA level

• A program is a set of instructions

stored in memory that can be read,

interpreted, and executed by the

hardware.

• Program instructions operate on data

stored in memory or provided by

Input/Output (I/O) device.

8

A Von-Neumann Processor

Memory

Control Unit

I/O

ALU
Reg

File

PC IR

Processing Unit

A thread is a “virtualized” or

“abstracted”

Von-Neumann Processor

Arrays of Parallel Threads

• A CUDA kernel is executed by a grid (array) of
threads

– All threads in a grid run the same kernel code
(SPMD)

– Each thread has indexes that it uses to
compute memory addresses and make control
decisions

9

i = blockIdx.x * blockDim.x +

threadIdx.x;

C[i] = A[i] + B[i];

…

0 1 2 254 255

…

Thread Blocks: Scalable Cooperation

• Divide thread array into multiple blocks

• Threads within a block cooperate via

shared memory, atomic operations and

barrier synchronization

• Threads in different blocks do not

interact

i = blockIdx.x *

blockDim.x +

threadIdx.x;

C[i] = A[i] + B[i];

…

0 1 2 254 255

Thread Block 0

…

1 2 254 255

Thread Block 1

0

i = blockIdx.x *

blockDim.x +

threadIdx.x;

C[i] = A[i] + B[i];

…

1 2 254 255

Thread Block N-1

0

i = blockIdx.x *

blockDim.x +

threadIdx.x;

C[i] = A[i] + B[i];

…

…… …

10

blockIdx and threadIdx

• Each thread uses indices to
decide what data to work on
– blockIdx: 1D, 2D, or 3D (CUDA

4.0)

– threadIdx: 1D, 2D, or 3D

• Simplifies memory
addressing when processing
multidimensional data
– Image processing

– Solving PDEs on volumes

– …

11

device

Grid
Block (0,

0)

Block (1,

1)

Block (1,

0)

Block (0,

1)

Block (1,1)

Thread

(0,0,0

)

Thread

(0,1,3

)

Threa

d

(0,1,

0)

Threa

d

(0,1,

1)

Threa

d

(0,1,

2)

Threa

d

(0,0,

0)

Threa

d

(0,0,

1)

Threa

d

(0,0,

2)

Threa

d

(0,0,

3)

(1,0,0)(1,0,1) (1,0,

2)

(1,0,3)

To learn more, read

Chapter 3.

