

Lecture 24 Architecture of Parallel Computers 1

Protocol Races

[§10.4] We have assumed—

• Directory state reflects the most up-to-date state of caches.

• Messages due to a request are processed atomically.

In reality, one of or both conditions may be violated

• Protocol races can occur

• Some protocol races can be handled in a simple way; others
are trickier.

We will discuss how protocol races can be handled.

• Purpose of discussion: illustrate approaches for dealing with
protocol races.

• Discussing all possible races is not the goal.

Handling races: out-of-sync directory

[§10.4.1] Suppose the home sends an invalidation to a node that has
replaced the block silently.

• The node can reply with

Suppose that the home receives a read request from a node that is
already a sharer from the home point of view.

• The directory can reply with data

Suppose that the home receives a read/write request from a node
that the home thinks is the owner.

• (In the directory, what state is this block in?)

• What might have happened to the block?

o If the block was clean,

o If the block was dirty,

• What should the home do? (Why will neither of these work?)

o Wait?

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScD8F5u6B6N3qLoZcddOP_ufbQiH-0Th9p0bVQfTulL_vX1jQ/viewform

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

o Reply with data?

• The directory alone cannot resolve this. Coherence controllers
at other nodes must participate in the solution.

• What does the coherence controller at a node n need to do
when a flush or writeback occurs?

o Maintain an outstanding transaction buffer (OTB) for flush
messages.

o Require the home to acknowledge the receipt of a flush

• These two steps allow node n to delay a Read/ReadX request
to a block that is still being written back.

• Hence, the home only receives Read/ReadX to a block that is
not being written back.

o When it does, it can send a

Protocol modification

Here is a modified state-transition diagram.

What is the meaning of “owner” in a directory protocol?

Lecture 24 Architecture of Parallel Computers 3

The meaning of “owner” is ambiguous here …

• because the directory may be out of sync with cache states,

• the directory may get a Read or ReadX from a node it thinks is
the owner (but actually isn’t).

(This isn’t permitted by the protocol.)

What do we do about it?

• Split EM into two states (EMA and EMB) to reflect this situation.

• EMA means the directory thinks the current owner is A.

• EMB means the directory thinks the current owner is B.

Transitions from state U

Suppose the block is in state U in the directory.

• What happens on a ReadX request?

o The system fetches the block from the local memory,
sends a ReplyD to the Requester, and moves to state

• What happens on a Read request?

o The system

o What state does the requesting cache transition to?

o What state does the directory transition to?

Transitions from state S

Suppose the directory state is S.

• What happens on a Read request?

o The directory knows it has a valid block in the local
memory.

o It sends a to the Requester and updates the
sharing vector.

o Directory state

https://docs.google.com/forms/d/e/1FAIpQLSdj3rBRhbFVjrhU9011wY_FUQG2h_BJz517qQmmNzVYlMo8bQ/viewform?usp=sf_link

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

• What happens on a ReadX request?

o Directory sends to the Requester.

o Directory sends to all (other) sharers.

o State changes to

o But, if it’s an upgrade, it just

Transitions from state EM

Suppose WLOG the directory state is EMA.

Suppose a Read request (from a different node B) is received.

• The state is set to

• An is sent to the owner (A) to change its
state to

Suppose a ReadX request (from a different node B) is received.

• Directory sends an invalidation message to

• This message also says to send the data to

• Directory sends a reply message to B, saying that will supply
the data.

• State transitions to

• (Note that it doesn’t matter whether owner is in state E or M.)

Suppose the directory has an out-of-sync view of cache states, and is
in state EMA.

• Suppose it receives a Read or ReadX from A.

o This means A’s block must’ve been replaced due to a
cache miss.

• The directory knows that A is really the owner.

• Thus, it can just respond with

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScfEb6Fk5ZVnHlOd5DUKYFHiIa-7k1a88M3wBWSKT9nVmve6A/viewform

Lecture 24 Architecture of Parallel Computers 5

Handling races: non-atomic messages

1. [§10.4.2] A sends a read request to home.
2. Home replies with data (but the message gets delayed).
3. B sends a write request to home.
4. Home sends invalidation to A, and it arrives before the ReplyD

Why is this a problem?

This is called an “early invalidation” race.

How should A respond to the invalidation?

Two incorrect ways to respond:

• A replies with InvAck.

o B thinks that its write propagation is complete
o A receives a ReplyD and places the block in its cache

(the block that should have been invalidated).

• A ignores the invalidation message

o The message is lost; write propagation has failed to occur

Solution:

• Brute force (avoids overlapped handling of requests):
o Home waits until it receives ack from all parties (home-

centric)

• Allow overlapping but ask nodes to participate (requester-
assisted)

o Node keeps an OTB

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

o It does not entertain requests (to the same block) until the
current transaction is completed

Exercise: Explain how each of these scenarios would play out using
the four-step diagram above.

Processing a Read Request

Case 1: Read to clean block

Home-centric approach

• Directory enters a
transient state.

• Home replies with data

• Requester receives
data, sends ack to
home.

• Home closes
transaction (transitions
to a stable state, update
sharing vector).

Cons: too much serialization at home, transaction closed late, and
it requires ack

Requester-assisted approach

• Directory sends ReplyD, then closes transaction

• Requester buffers/nacks all new requests until ReplyD received
(i.e., till the current Read transaction is completed)

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSdnvL6ClfiuU6oxkX6uLNUpatZ4fPVq8d75UfiLjKE_LQ554Q/viewform

Lecture 24 Architecture of Parallel Computers 7

Case 2: Read to block in EM state

Home-centric approach

• Requester sends Read to home

• Home enters a transient state, sends intervention to owner

• Owner flushes block to home and requester

• Requester sends ack back to home

• Home closes transaction (transitions to shared state, updates
sharing vector)

Requester-assisted approach

• Requester sends Read to home

• Home enters a transient state, sends intervention to owner

• Home cannot close the transaction yet, because in the final
state (Shared), it must have a clean copy of the block

• Owner flushes block to home and requester

• Upon receiving the block from owner, home closes transaction

Processing a write (ReadX) request

We will cover this in the next class.

Write Propagation and Serialization

[§10.4.3] In a directory-based protocol,

• Write propagation is achieved through invalidation.

• Multiple writes to a block are serialized by the protocol.

o Transaction closes after the ack from current owner is
received by home.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

o A new ReadX request is not served until the previous ReadX
request is closed.

o This provides write serialization

Here is a diagram of serializing writes by A, B, and C.

Is it using the home-centric or requester-assisted scheme?

Memory consistency models

[§10.4.5] Implementing sequential consistency:

All memory accesses by a processor must be issued and completed
in program order.

Which of the two (issuing or completion) is hardest to assure?

• Write completion detected when all InvAcks are collected

• When does read completion occur?

• Prefetching and load speculation can be used.

As the number of processors grows,

• Average latency of a cache miss increases

• Harder to hide it

• What does this do to the viability of SC?

