
CSC/ECE 506: Architecture of Parallel Computers

Other Bus-Based
Coherence Protocols

Lecture 15
(Chapter 7, cont.)

E. F. Gehringer,
based on slides by Yan Solihin

1

Presenter Notes
Presentation Notes
When editing the blank template, be sure to update the course number and title:	on both the Title Master and Slide Master in the “Slide Masters” view	in the Text Box as well as in the Alt-text for the Text Box

CSC/ECE 506: Architecture of Parallel Computers

Lecture 15 Outline

2

Inval-
idate Update

3-state MSI Firefly

4-state MESI Dragon

• MSI protocol
– State diagram
– Animations

• MESI protocol
• Dragon protocol
• Firefly protocol

Presenter Notes
Presentation Notes
Now let’s go through several coherence protocols one by one, starting with the MSI protocol.As you can see from the table in the lower right-hand corner of the slide, the MSI protocol is a 3-state invalidation protocol. In later videos, we will consider a 4-state invalidation protocol, MESI; a 3-state update protocol, Firefly; and a 4-state update protocol, Dragon.With each of the protocols, we will start with the state diagram and then proceed with an animation showing how the protocol operates.

CSC/ECE 506: Architecture of Parallel Computers

Basic MSI Writeback Invalidation Protocol

• States
• Invalid (I)
• Shared (S): one or more copies, and memory copy is up-to-date
• Dirty or Modified (M): only one copy

• Processor Events:
• PrRd (read), PrWr (write)

• Bus Transactions
• BusRd: asks for copy with no intent to modify
• BusRdX: asks for copy with intent to modify (instead of BusWr)
• Flush: updates memory

• Actions
• Update state, perform bus transaction, flush value onto bus

3

Presenter Notes
Presentation Notes
The three states of the protocol are first, the Invalid state. This should be familiar from the write-through protocol; it just indicates that the block is not cached, or was cached, but has since been invalidated.The second state is the Shared state. In this protocol, if a block has not been written into by any processor since being loaded, copies of this block can exist in multiple caches. Since it hasn’t been written into, we say that it is “clean,” or “up to date.”The third state is the Modified state. This is a block that has been modified since it was fetched from memory. Sometimes we call a modified block “dirty.” A block that has been modified can be held in only one cache. It is the job of the protocol to enforce this.[click] As we go through the protocol, we process a set of events, such as reads and writes. If the event is caused by the current processor—the processor whose cache we are observing—it is called a “processor event.” The two processor events are PrRd (processor read) and PrWr (processor write).[click] Transactions that are initiated elsewhere in the system come to our processor over the shared bus. In this protocol, there are three bus transactions:BusRd, which means that another processor has requested a read-only copy of the block from memory. Processors and memory are on the bus, so this request must go across the bus from processor to memory.BusRdX, which asks for a copy of the block that is going to be written. You might think that would be a BusWrite transaction, but it’s really more than a bus write. Only one word is being written, but the whole block needs to be fetched into the cache before or during the write. For that reason, it’s called a BusRdX, for “bus read exclusive.” It’s called “exclusive,” because after it occurs, only one cache is allowed to have a copy of this block. The write that is taking place will modify the line.Flush, which means that a cache line is sent across the bus to update memory. This will happen when a block is replaced because of a cache miss to some other block, or when another processor requests a copy of a block that has been modified since it was cached.[click] When a read or a write occurs, the cache state must be updated accordingly. In most cases, a bus transaction will be needed, and sometimes a cache line needs to be flushed onto the bus. These protocol actions are represented in the state diagram and in our animation.

CSC/ECE 506: Architecture of Parallel Computers

State-Transition Diagrams

• On the following slides, we will display the
state-transition diagrams
• for processor-initiated transactions
• for bus-initiated transactions

• We will see transitions of the following
form:
• Invalidation: 〈Any〉 I
• Intervention: {Exclusive, Modified} Shared

4

Presenter Notes
Presentation Notes
We’re about to see our first state-transition diagram. First, we’ll see the diagram for processor-initiated transactions, and then the diagram for bus-initiated transactions. We’ll follow that up with a state diagram showing all transactions, both processor-initiated and bus-initiated.When a line in any state moves into state I, that’s an “invalidation” transition. When a line in state M—the “exclusive,” or “modified,” state moves into the shared state, that’s called a “intervention.”

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor-Initiated Transactions

5

M

I

S

PrRd/ –
PrWr/ –

PrWr/BusRdX

PrRd/BusRd

PrRd/ –

PrWr/BusRdX

Why does a PrWr in
state S induce a

BusRdX?

Presenter Notes
Presentation Notes
We see the three states of this protocol, M, S, and I.[click] If a processor writes a block that it hasn’t already cached, that’s a Processor Write transaction out of state I. It causes a BusRdX transaction on the bus, because it must write a word to the line, which means that any other cache holding the block must transition the affected line into the Invalid state.[click] If a processor reads a block that’s not in its cache, that’s a Processor Read transaction out of state I. It causes a BusRd transaction, because the processor just needs to fetch a clean copy of the block; it doesn’t need to cause any other caches to change state.[click] If a processor reads a block that’s already in its cache, that’s a Processor Read transaction, but main memory does not need to be referenced, so there’s no bus transaction.[click] There’s also a way that a line can transition from state S to state M. Think for a moment of what might cause that …[click] That’s when a processor writes to a line that’s already in its cache. The line transitions to state M, and a bus action is needed, because any other cache holding a copy of the line must be invalidated. Note that when I say the other “cache” is invalidated, what I really mean is that the affected line in the other cache is invalidated.[click] See if you can state in another way why the BusRdX is needed.[click] If a block is cached in state M, then the processor that has it cached is allowed to read or write it without any bus activity. We know that it doesn’t affect any other processor’s cache, because no other cache can hold a copy of a block we have in state M.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Bus-Initiated Transactions

6

M

I

S

BusRdX/Flush

BusRdX/ –

BusRd/ –

BusRd/Flush

BusRd/ –
BusRdX/ –

Thus, valid
data must be
supplied
by memory

Fill in the last two
transitions here.

Presenter Notes
Presentation Notes
Now, let’s look at the bus transactions.[click] If our cache has a line in Invalid state, and another processor reads or writes the block, this will come in as a BusRd or BusRdX transaction across the bus. Our cache doesn’t have to take any action, because the line is already invalid.[click] If our cache has a line in state S, and something comes in over the bus, it will stay in state S. What are we talking about?[click] We’re talking about a BusRd. That is to say, if another processor reads a block that we have in shared state, we don’t need to do anything about it. We just stay in Shared state.[click] The fact that we don’t do anything means that the other processor needs to read the line from memory. As we will see later, some protocols implement cache-to-cache transfers, where a cache is responsible for sending a copy of its line to another cache. However, the MSI protocol doesn’t do that.[click] If our cache has a block in state M and another processor reads the data, we see that as a BusRd coming in over the bus. In this case, our cache does need to take action. It changes its state to S, flushes the block to memory, and the other processor can pick up the block as it goes across the bus and store it in its cache.[click] Then there are two transitions from the other states to state I.[click] See if you can tell us what they are.

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSf8YXt8mWKE_0ZE6xzw2Sy8qqofri4cVW_7yQRsu2bw1OoxOw/viewform

CSC/ECE 506: Architecture of Parallel Computers

MSI State Transition Diagram

77

Processor-Initiated transactions

Bus-Snooper-Initiated transactions

PrRd/—

PrRd/—

PrWr/BusRdX
BusRd/—

PrWr/—

S

M

I

BusRdX/Flush

BusRdX/—

BusRd/Flush

PrWr/BusRdX

PrRd/BusRd

Presenter Notes
Presentation Notes
Now we can put it altogether, and display the processor-initiated and bus-initiated transitions on the same diagram.Note that in this diagram, state M is at the top, with state S in the middle and state I at the bottom. This signifies that when a cache has a block in a higher state, it has more control over that block.

CSC/ECE 506: Architecture of Parallel Computers

Lecture 15 Outline

8

• MSI protocol
– State diagram
– Animations

• MESI protocol
• Dragon protocol
• Firefly protocol

Inval-
idate Update

3-state MSI Firefly

4-state MESI Dragon

Presenter Notes
Presentation Notes
Now we are ready to watch the animation.

CSC/ECE 506: Architecture of Parallel Computers

MSI Visualization – Start State

9

Start state. All caches
empty and main memory
has A = 1.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
It starts with all caches empty and the value of A in memory being 1. In this animation, we will only be interested in one variable, even though a cache line is much larger than needed to hold one integer value.Note that the processors and caches are shown above the bus, and memory is shown below. Each cache has a snooper, which examines all bus transactions.At the lower left is our instruction sequence, or trace. It consists of seven instructions. We will show what happens to memory and the caches when these instructions are executed.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Reads A

Processor P1 attempts to
read A from its cache.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
Mem returns data

10

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
First, P1 reads A. From the view of P1, this is a Processor Read.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Reads A

Processor P1 issues a
BusRd.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Since P1 does not have A cached, this is a cache miss, and results in a bus transaction to fetch the block containing A.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Reads A

Main memory returns data
to processor P1 which
updates its cache.

P1

Cache
A = 1 S
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Main memory responds to the bus transaction, and forwards the block to P1. P1‘s cache caches the line containing A in Shared state.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Reads A

Read operation completes. P1

Cache
A = 1 S
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now the read operation is complete.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Writes A = 2

Processor P1 writes to its
cache.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrWr A
P1 BusRdX

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Next, P1 changes the value of A to 2. From P1‘s perspective, this is a Processor Write. Since A is in the cache, the write is directed to the cache.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Writes A = 2

Processor P1 issues a
BusRdX request.

P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrWr A
P1 BusRdX

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
But, since the line was in State S, it had to change to State M. Thus, a BusRdX transaction is required for P1 to get exclusive access to A.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Writes A = 2

Write operation completes. P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
When the bus transaction finishes, the write operation completes.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Reads A

Processor P3 attempts to
read A from its cache.

P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P3 reads A. This is a cache miss.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Reads A

Processor P3 issues a
BusRd.

P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
So a BusRd transaction occurs.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Reads A

Processor P1 snoops the
BusRd from processor P3.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Before memory responds, P1's snooper notices that another processor is reading, so it needs to downgrade its access, and changes to State S.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Reads A

Processor P1 flushes A,
sending updated data to P3
and main memory.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Because P1 has the only up-to-date copy of the block, it flushes it out over the bus, where it is picked up by P3 and main memory.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Reads A

Read operation completes. P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
And the read operation completes.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Writes A = 3

Processor P3 writes to its
cache.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusRdX
P1 snoops BusRdX

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Next, P3 writes A.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Writes A = 3

Processor P3 issues a
BusRdX request.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusRdX
P1 snoops BusRdX

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Because its copy of A is in State S, it can't write it without issuing a BusRdX.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Writes A = 3

Processor P1 snoops the
BusRd and invalidates its
cache.

P1

Cache
A = 2 I
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 M
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusRdX
P1 snoops BusRdX

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The BusRdX is snooped by P1, which has to invalidate its copy of A. Meanwhile, P3's write completes, changing the cached value to 3.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Writes A = 3

Write operation completes. P1

Cache
A = 2 I
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 M
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
And the write operation completes.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Reads A

Processor P1 reads from its
cache.

P1

Cache
A = 2 I
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 M
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
P3 snoops BusRd
P3 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P1 tries to read the value of A from its cache.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Reads A

Processor P1 issues a
BusRd request.

P1

Cache
A = 2 I
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 M
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
P3 snoops BusRd
P3 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
But, since its copy is invalid, it needs to issue a BusRd to read it.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Reads A

Processor P3 snoops the
BusRd.

P1

Cache
A = 2 I
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 M
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
P3 snoops BusRd
P3 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P3 snoops this BusRd ...

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Reads A

Processor P3 flushes,
updating processor P1,
main memory and its own
cache state.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
P3 snoops BusRd
P3 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
and flushes the block out over the bus, where it is picked up by memory and P1's cache.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P1 Reads A

Read operation completes. P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The read operation completes.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Reads A

Processor P3 reads from its
cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now, P3 reads A from its cache.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Reads A

Processor P3 returns valid
data from its cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This is a cache hit, so the cache simply returns the data. No bus transaction takes place.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P3 Reads A

Read operation completes. P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The read operation completes.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P2 Reads A

Processor P2 reads from its
cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRd A
P2 BusRd A
MemCntr observes BusRd
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P2 finally gets into the act, by issuing a read for A.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P2 Reads A

Processor P2 issues a
BusRd request.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRd A
P2 BusRd A
MemCntr observes BusRd
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Since it's a cache miss, it requires a bus transaction, namely a BusRd.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P2 Reads A

Main memory controller
observes the BusRd.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRd A
P2 BusRd A
MemCntr observes BusRd
Mem returns data

MSI:

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Memory responds, and sends the block containing A to P2's cache.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P2 Reads A

Main memory returns valid
data.

P1

Cache
A = 3 S
Snooper

P2

Cache
A = 3 S
Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRd A
P2 BusRd A
MemCntr observes BusRd
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

CSC/ECE 506: Architecture of Parallel Computers

MSI: Processor P2 Reads A

Operation completes. P1

Cache
A = 3 S
Snooper

P2

Cache
A = 3 S
Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The read operation is complete. Now all three caches have valid copies of the block, in State S.

CSC/ECE 506: Architecture of Parallel Computers

MSI Example: Rd/Wr to a single line

39

Proc
Action

State P1 State P2 State P3 Bus Action Data From

R1 S – – BusRd Mem

W1 M – – BusRdX* Mem

R3 S – S BusRd/Flush P1 cache

W3 I – M BusRdX* Mem

R1 S – S BusRd/Flush P3 cache

R3 S – S – Own Cache
R2 S S S BusRd Mem

*or, BusUpgr (data from own cache)

Presenter Notes
Presentation Notes
This table shows which caches have the block in which state after each instruction.It also shows which bus action takes place. We've assumed that when a line changes from state S to State M, a BusRdX is issued. But our system might also support a BusUpgrade transaction, in which case the line can change to State M without the block having to be sent across the bus to the requesting processor.Also notice where the data comes from. It comes from memory, except in case of a cache hit, or when the up-to-date copy of the block resides in another cache.

CSC/ECE 506: Architecture of Parallel Computers

Notes on MSI Protocol

40

• For M I, BusRdX/Flush: why flush?

Presenter Notes
Presentation Notes
One transition we didn't see during our animation was an invalidation of a block in State M, as would occur when two different processors write the same block in sequence. At first glance, you might wonder why a flush is needed. Why can't the second processor just read the line from main memory and then overwrite the write that was performed by the first processor?

CSC/ECE 506: Architecture of Parallel Computers

Notes on MSI Protocol

41

• For M I, BusRdX/Flush: why flush? Because it is a read with
intention to write, as opposed to write.
• Thus, there is a possibility for a read before the write is performed.
• In addition, the write could be to a different word in the line (so the

whole line needs to be flushed).

Presenter Notes
Presentation Notes
There are two reasons for that. First, it could be a "read with intention to write"—something like an Increment instruction, where the existing value needs to be read first. Or, the second processor might write to the same block, but to a different word in the block. Then, to stay current, it also needs to see the word that was changed by the first processor.

CSC/ECE 506: Architecture of Parallel Computers

Notes on MSI Protocol

42

• For M I, BusRdX/Flush: why flush? Because it is a read with
intention to write, as opposed to write.
• Thus, there is a possibility for a read before the write is performed.
• In addition, the write could be to a different word in the line (so the

whole line needs to be flushed).
• In case of a write to a shared block:

• Cache already has latest data; can use upgrade (BusUpgr) instead of
BusRdX

• Replacement changes state of two blocks: outgoing and incoming
• Flush has to modify both caches and main memory

Note: Coherence granularity is u (a single line). What happens
when all the reads go to word 0 on line u, but write by P3 goes
to word 1 on line u? False-sharing miss on the 2nd R1

Presenter Notes
Presentation Notes
As we just saw, if the write was to a shared block, we don't actually need to read the data again; we can use a BusUpgr transaction, if our bus provides one.Also notice that a cache miss causes two blocks to change state: the block that is being replaced—the "victim"—changes to State I, and the block that is being brought into the cache changes to some other state.When a block is flushed, it is flushed to the requesting cache and to main memory. That avoids the need for separate bus transactions to update main memory.[click] Finally, note that a write anywhere in the line will invalidate the same block in all other caches. So even words in the line that have not been written will be purged from all other caches.Looking back at the previous page, suppose that word 0 of the line was read by all read operations, but the write by P3 was to a different variable on the same line (say, B, which was stored in word 1 of the line)? ……[click] The second R1 would still miss, but now it would be a false-sharing miss.

CSC/ECE 506: Architecture of Parallel Computers

MSI: Coherence and SC
• Coherence:

• Write propagation:
• through invalidation, and flush on subsequent BusRds

• Write serialization?
• Writes (BusRdX) that go to the bus appear in bus order (and handled

by snoopers in bus order!)
• Writes that do not go to the bus?

• Only happen when the line state is M, i.e. when I am the only
processor holding the line. Local writes are only visible to me,
so they are serialized.

• To enforce SC:
• Program order: enforced by following the bus transaction order

• All writes appear on the bus
• All local writes (within 1 processor) can follow program order

• Write completion: Occurs when write appears on bus
• Write atomicity: A read returns the latest value of a write. At that time,

the value is visible to all others (on a bus transaction, or on a local write).
43

Presenter Notes
Presentation Notes
Is MSI coherent and sequentially consistent? Well, are the conditions of write propagation and write serialization met?Write propagation is met, because any write anywhere in the system will cause all other copies to be invalidated, and they will be refetched from memory the next time they are read.Write serialization is met, because all writes are serialized over the bus.Sure, there are some writes to cache lines that are already in State M, that don't go on the bus. But in this case, no other processor is using those words, and, before any other processor uses them, there will be a bus transaction.[click] For sequential consistency, all writes to all locations are serialized on the bus, whenever they need to be visible to more than one processor. As soon as a write has gone across the bus, we know if's visible to all processors. Any read will return the latest value written.

CSC/ECE 506: Architecture of Parallel Computers

Lecture 15 Outline

• MSI protocol
• MESI protocol
• Dragon protocol
• Firefly protocol

44

Inval-
idate Update

3-state MSI Firefly

4-state MESI Dragon

Presenter Notes
Presentation Notes
Now let’s take a look at the MESI protocol. As shown in the table at the lower right of the slide, it is a 4-state invalidation protocol.

CSC/ECE 506: Architecture of Parallel Computers

Lower-Level Protocol Choice

• What transition should occur when a
BusRd is observed in state M?
– Should the state change to S or to I?

45

Presenter Notes
Presentation Notes
With your knowledge of the MSI protocol, perhaps you can answer this question: If a line is in State M, and the snooper notices a BusRd to that line, which state should it change into, S or I?

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSff6PqjUZmb59FEVT_0jybfDB_rr8jx7_MPDiVmv6mBXZE7zw/viewform

CSC/ECE 506: Architecture of Parallel Computers

MESI (4-state) Invalidation Protocol
• Here’s a problem with the MSI protocol:

• A {Rd, Wr} sequence causes two bus transactions
• BusRd (I S) followed by BusRdX or BusUpgr (S M)
• even when no one is sharing (e.g., serial program!)
• In general, coherence traffic from serial programs is unacceptable

• To avoid this, add a fourth state, Exclusive:
• Invalid
• Modified (dirty)
• Shared (two or more caches may have copies)
• Exclusive (only this cache has clean copy,

same value as in memory)
• How does the protocol decide whether I E or I S?

• Need to check whether someone else has a copy
• “Shared” signal on bus: wired-or line asserted in response to BusRd

46

Presenter Notes
Presentation Notes
Here’s another way we might to tweak the MSI protocol. If a processor reads the value of a variable and then writes it, two bus transactions occur: A BusRd and then a BusRdX or a BusUpgr, depending on the protocol.[click] This happens even if the line is unshared—and most of the lines in most caches are unshared.[click] As I said, here is the sequence of operations.[click] This means that even single-threaded programs induce bus transactions, and potentially slow down other processes.[click] To avoid this, we can add a fourth state to the protocol. This is the Exclusive state, or State E. It means that the line is clean, but only one processor has it cached.The Shared state still means that the line is clean, but in the case of a Shared line, there may be copies of the line in two or more caches.[click] This raises a question: When a clean block is fetched from memory, how does the protocol decide whether it should go into State E or State S?[click] It does so by checking whether another processor has a copy of the block cached.This is done by observing whether a so-called “shared line” is asserted. When loading a block, this line will be asserted if some other cache already has the block cached.

CSC/ECE 506: Architecture of Parallel Computers

MESI: Processor-Initiated Transactions

47

M

S

E

PrRd/–

PrWr/–

I

PrRd/BusRd(~S)

PrRd/BusRd(S)

PrWr/BusRdX

PrRd/–

Fill in the last two
transitions here.

Presenter Notes
Presentation Notes
Slide 5. So, our transition diagram now has four states, M, E, S, and I.[click] If a line that was not cached, or was invalidated, is fetched into the cache via a processor read, the ensuing bus read checks the shared line. If it’s not asserted, the line is cached in State E.[click] However, if the line is asserted when a block is fetched into the cache, the line changes into State S.[click] And if the miss is a write reference, the line is cached in State M.[click] If a line is in State E, and is read, then it stays in State E, and no bus transaction is necessary.[click] But if it is written, it has to change to State M. Note that no bus transaction is needed.This is the strength of the MESI protocol.[click] If a line is in State S, and is read, then it stays in State S, and no bus transaction is necessary.[click] Now, see if you can fill in the last two transitions …

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSec5ncHDGoQKeguoxEZLsZuntSyuEdmvel8nVXjv_izg9N6eg/viewform

CSC/ECE 506: Architecture of Parallel Computers

MESI: Bus-Initiated Transactions

48

M

I

E

BusRd/–
BusRdX/–

S

BusRd/Flush BusRd/Flush BusRdX/Flush

BusRdX/Flush

BusRdX/Flush׳
BusRd/Flush׳

Flush׳ means flush only if cache-
to-cache sharing is used; only the
cache responsible for supplying
the data will do a flush.

Presenter Notes
Presentation Notes
Now let’s look at the bus-initiated transitions.[click] If a line is in Invalid state and another processor reads or writes it, it stays Invalid.[click] If a block is in State E when a BusRd comes in, that means another processor wants to cache it, so the block will now be shared. This requires a transition to State S.[click] If a block is in State E when another processor writes it, it must transition to State I.But this processor holds the only valid copy of the block, so as it is invalidating it, it sends it out onto the bus, from which main memory, as well as the requesting processor, pick it up.[click] If a line is in State S and another processor reads it, it stays in State S.In this situation, some protocols supply the block from memory; others depend on the processor to send the data.If the protocol is a cache-to-cache sharing protocol, it is the cache’s responsibility to do flush. So it flushes the line to the bus, where it’s picked up by the requesting processor.[click] The “prime” after “Flush” indicates that this is only done in a cache-to-cache sharing protocol.[click] If a line is in State S when a BusRdX comes in, it transitions to State I.And, if cache-to-cache sharing is in use, it’s the processor’s responsibility to put the line out on the bus.[click] If a line is in State M when another processor reads the line, it transitions to State S.Note that in this case, the processor always flushes the line, because only the processor in State M has an up-to-date copy of the line.[click] But if a BusRdX comes in while the line is in State M, it transitions to State I while flushing the block.

CSC/ECE 506: Architecture of Parallel Computers

MESI State Transition Diagram

49

• BusRd(S) means shared line asserted on BusRd
transaction

PrWr/—

BusRd/Flush

PrRd/

BusRdX/Flush

PrWr/BusRdX

PrWr/—

PrRd/—

PrRd/—
BusRd/Flush′

E

M

I

S

PrRd

BusRd(S)

BusRdX/Flush′

BusRdX/Flush

BusRd/
Flush

PrWr/BusRdX

PrRd/
BusRd (S)

Presenter Notes
Presentation Notes
Putting it altogether, we see that the M state is at the top, representing the most control by the owning cache. The E state is next, because it can transition to M without a bus transaction. S is next, and I is again at the bottom.The edges on the left side of the diagram represent processor-initiated transactions, and the edges on the right side represent bus-initiated transactions.

BusRd (S)

PrRd/

r/BusRdX

PrW

Flush

BusRd/

BusRdX/Flush

BusRdX/Flush

BusRd(S)

PrRd

S

I

M

E

BusRd/Flush

PrRd/—

PrRd/—

r/—

PrW

r/BusRdX

PrW

BusRdX/Flush

PrRd/

BusRd/Flush

r/—

PrW

CSC/ECE 506: Architecture of Parallel Computers

MESI Visualization

50

Start state. All caches
empty and main memory
has A = 1.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
When our animation starts, all caches are empty, and the value of A in main memory is 1.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

51

Processor P1 attempts to
read A from its cache.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Processor P1 reads A, but A is not yet cached.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

52

Processor P1 issues a
BusRd.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This induces a BusRd transaction. The memory controller responds with the block.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

53

Main memory returns data
to processor P1 which
updates its cache.

P1

Cache
A = 1 E
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The block reaches P1’s cache. The state of the line is set to E, since the line has not been modified and is not held in any other cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

54

Read operation completes. P1

Cache
A = 1 E
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This completes the read operation.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Writes A = 2

55

Processor P1 writes to its
cache.

P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrWr A

One less bus request
due to Exclusive state,
esp. for serial programs

M

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P1 then writes A, changing its value to 2. This is a cache hit, but the cache has to change state to M. [click] No bus transaction is needed, because a block in State E can’t be held in any other cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Writes A = 2

56

Write operation completes. P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The write operation is complete.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 attempts to
read A from its cache.

P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P3 tries to read A.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 issues a
BusRd.

P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This causes a cache miss, so a BusRd is issued.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P1 snoops the
BusRd from processor P3.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P1 snoops the read, and changes its state to S.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P1 flushes,
sending updated data to P3
and main memory.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P1 flushes the block across the bus, where it is picked up by main memory and P3.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Read operation completes. P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Then the read operation completes.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Processor P3 writes to its
cache.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusUpgr
P1 snoops BusUpgr

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Next, P3 writes A.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Processor P3 issues a
BusUpgr request.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusUpgr
P1 snoops BusUpgr

Note: BusUpgr used
instead of BusRdX

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Because its copy of A is in State S, it can't write it without issuing a BusUpgr. [click] Or, if there’s no BusUpgr, it would issue a BusRdX.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Processor P1 snoops the
BusRd and invalidates its
cache.

P1

Cache
A = 2 I
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 M
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusUpgr
P1 snoops BusUpgr

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The BusUpgr is snooped by P1, which has to invalidate its copy of A. Meanwhile, P3's write completes, changing the cached value to 3. P3 changes the line’s state to M.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Write operation completes. P1

Cache
A = 2 I
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 M
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
And the write operation completes.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

Processor P1 reads from its
cache.

P1

Cache
A = 2 I
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 M
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
P3 snoops BusRd
P3 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P1 tries to read the value of A from its cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

Processor P1 issues a
BusRd request.

P1

Cache
A = 2 I
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 M
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
P3 snoops BusRd
P3 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
But, since its copy is invalid, it needs to issue a BusRd to read it.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

Processor P3 snoops the
BusRd.

P1

Cache
A = 2 I
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 M
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
P3 snoops BusRd
P3 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P3 snoops this BusRd ...

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

Processor P3 flushes,
updating processor P1,
main memory and its own
cache state.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
P3 snoops BusRd
P3 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
… and flushes the block out over the bus, where it is picked up by memory and P1's cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

Read operation completes. P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The read operation completes.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 reads from its
cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now, P3 reads A from its cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 returns valid
data from its cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This is a cache hit, so the cache simply returns the data. No bus transaction takes place.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Read operation completes. P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The read operation completes.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Processor P2 reads from its
cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRd A
P2 BusRd A
P1 Flush

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P2 finally gets into the act, by issuing a read for A.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Processor P2 issues a
BusRd request.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRd A
P2 BusRd A
P1 Flush

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Since it's a cache miss, it requires a bus transaction, namely a BusRd.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Main memory controller
observes the BusRd.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRd A
P2 BusRd A
P1 Flush

A = 3 S

X

Referred to as
cache-to-cache transfer
in Illinois MESI protocol

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P1 flushes the block out on the bus, where P2 picks it up.[click] This is referred to as a cache-to-cache transfer.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Operation completes. P1

Cache
A = 3 S
Snooper

P2

Cache
A = 3 S
Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The read operation is complete. Now all three caches have valid copies of the block, in State S.

CSC/ECE 506: Architecture of Parallel Computers

MESI Example (Cache-to-Cache Transfer)

78

* Data from memory if no cache-to-cache transfer, BusRd/ –

Proc
Action

State P1 State P2 State P3 Bus Action Data From

R1 E – – BusRd Mem

W1 M – – – Own cache

R3 S – S BusRd/Flush P1 cache

W3 I – M BusRdX Mem

R1 S – S BusRd/Flush P3 cache

R3 S – S – Own cache

R2 S S S BusRd/Flush׳ P1/P3
Cache*

Presenter Notes
Presentation Notes
This table shows which caches have the block in which state after each instruction.It also shows which bus action takes place. We've assumed that when a line changes from state S to State M, a BusRdX is issued. But our system might also support a BusUpgrade transaction, in which case the line can change to State M without the block having to be sent across the bus to the requesting processor.Also notice where the data comes from. It comes from a cache, except in two cases: the first read from memory, and when the block changes from State S to State M. In the latter case, if BusUpgr were used, data would come from the cache.[click] But if there were no cache-to-cache transfer, data would have to come from memory on the last read.

CSC/ECE 506: Architecture of Parallel Computers

Change from MSI (Cache-to-Cache Transfer)

79

* Data from memory if no cache-to-cache transfer, BusRd/ –

Proc
Action

State P1 State P2 State P3 Bus Action Data From

R1 E – – BusRd Mem

W1 M – – – Own cache

R3 S – S BusRd/Flush P1 cache

W3 I – M BusRdX Mem

R1 S – S BusRd/Flush P3 cache

R3 S – S – Own cache

R2 S S S BusRd/Flush׳ P1/P3
Cache*

Presenter Notes
Presentation Notes
Now let’s look at how this protocol differs from MSI. One obvious change is that Processor 1 caches the block in State E.Then when P1 writes the block, the state can change to M without a bus transaction, or a read from memory.

CSC/ECE 506: Architecture of Parallel Computers

80

* Data from memory if no cache-to-cache transfer, BusRd/ –

Proc
Action

State P1 State P2 State P3 Bus Action Data From

R1 E – – BusRd Mem

W1 M – – – Own cache

R3 S – S BusRd/Flush P1 cache

W3 I – M BusRdX Mem

R1 S – S BusRd/Flush P3 cache

R3 S – S – Own cache

R2 S S S BusRd/Flush׳ P1/P3
Cache*

Change from MSI (Cache-to-Cache Transfer)

Presenter Notes
Presentation Notes
The last difference is due to the cache-to-cache transfer. Instead of a BusRd and memory supplying the data, there’s a BusRd and a flush from another cache.

CSC/ECE 506: Architecture of Parallel Computers

81

* Data from memory if no cache-to-cache transfer, BusRd/ –

Proc
Action

State P1 State P2 State P3 Bus Action Data From

R1 E – – BusRd Mem

W1 M – – – Own cache

R3 S – S BusRd/Flush P1 cache

W3 I – M BusRdX Mem

R1 S – S BusRd/Flush P3 cache

R3 S – S – Own cache

R2 S S S BusRd/Flush׳ P1/P3
Cache*

Change from MSI (Cache-to-Cache Transfer)

Presenter Notes
Presentation Notes
If BusUpgr is used, there’s only one other difference.

CSC/ECE 506: Architecture of Parallel Computers

MESI Example (Cache-to-Cache Transfer+BusUpgr)

82

Proc
Action

State P1 State P2 State P3 Bus Action Data From

R1 E - - BusRd Mem

W1 M - - - Own cache

R3 S - S BusRd/Flush P1 cache

W3 I - M BusUpgr Own cache

R1 S - S BusRd/Flush P3 cache

R3 S - S - Own cache

R2 S S S BusRd/Flush׳ P1/P3
Cache*

* Data from memory if no cache-to-cache transfer, BusRd/ –

Presenter Notes
Presentation Notes
When P3 writes to the cache, the BusUpgr is used and data comes from P3’s cache instead of from memory.

CSC/ECE 506: Architecture of Parallel Computers

MESI Example (Cache-to-Cache Transfer+BusUpgr)

83

Proc
Action

State P1 State P2 State P3 Bus Action Data From

R1 E - - BusRd Mem

W1 M - - - Own cache

R3 S - S BusRd/Flush P1 cache

W3 I - M BusUpgr Own cache

R1 S - S BusRd/Flush P3 cache

R3 S - S - Own cache

R2 S S S BusRd/Flush׳ P1/P3
Cache*

* Data from memory if no cache-to-cache transfer, BusRd/ –

Presenter Notes
Presentation Notes

CSC/ECE 506: Architecture of Parallel Computers

Lower-Level Protocol Choices

• Who supplies data on miss when not in M state: memory or
cache?

• Original, lllinois MESI: cache
• assumes cache is faster than memory (cache-to-cache transfer)
• Not necessarily true

• Adds complexity
• How does memory know it should supply data? (must wait for

caches)
• A selection algorithm is needed if multiple caches have valid data.

• Useful in a distributed-memory system
• May be cheaper to obtain from nearby cache than distant memory
• Especially when constructed out of SMP nodes (Stanford DASH)

84

Presenter Notes
Presentation Notes
As we’ve seen, cache-to-cache transfers are used in this protocol.[click] But cache-to-cache transfers add complexity, because memory can’t respond with data until it’s sure that the caches won’t.And, if multiple caches have valid copies of the block (as occurred during the last step of our example), the caches must agree on which of them is going to flush the data.[click] Cache-to-cache transfers are useful in a distributed system, if the cache is in another processor at the same node, and the memory is at a different node.

CSC/ECE 506: Architecture of Parallel Computers

Lecture 15 Outline

• MSI protocol
• MESI protocol
• Dragon protocol
• Firefly protocol

85

Inval-
idate Update

3-state MSI Firefly

4-state MESI Dragon

Presenter Notes
Presentation Notes
Now let’s take a look at the Dragon protocol. As shown in the table at the lower right of the slide, it is a 4-state update protocol.

CSC/ECE 506: Architecture of Parallel Computers

Dragon Writeback Update Protocol
• Four states

• Exclusive-clean (E): Memory and I have it
• Shared clean (Sc): I, others, and maybe memory, but I’m not owner
• Shared modified (Sm): I and others but not memory, and I’m the owner

• Sm and Sc can coexist in different caches, with at most one Sm
• Modified or dirty (M): I and, no one else
• On replacement: Sc can silently drop, Sm has to flush

• No invalid state
• If in cache, cannot be invalid
• If not present in cache, can view as being in not-present or invalid state

• New processor events: PrRdMiss, PrWrMiss
• Introduced to specify actions when block not present in cache

• New bus transaction: BusUpd
• Broadcasts single word written on bus; updates other relevant caches

86

Presenter Notes
Presentation Notes
The four states are …Exclusive (E): This is the same as in MESI. The copy is clean, and no other processor has it cached.Shared clean (Sc): This is similar to S in our invalidation protocols, except that the block is definitely held in more than one cache, and the current processor was not the last processor to write the block.Shared modified (Sm): The block is shared, and the current processor was the last processor that wrote to the block. This processor is called the owner. Unlike in one of our invalidation protocols, a shared block doesn’t necessarily have to be up to date in main memory. But the processor in State Sm is responsible for updating memory when it has to get rid of the block.The block can be in Sm in one cache and Sc in other caches, with at most one Sm. If the block is replaced in the cache, Sc doesn’t have to flush it to memory, but Sm does.Modified (M): This is the same as in the invalidation protocols. Only one processor has the block cached, and it has been written to since being brought in from memory.[click] Note that there is no Invalid state in an update protocol, because blocks are never invalidated. Of course, there are some blocks that are not cached, and these blocks can be considered to be “invalid.” But this is not shown in the state transition diagrams.[click] Instead of showing blocks as moving out of the Invalid state, we introduce two new processor events, PrRdMiss, PrWrMiss. They tell what to do if a block is referenced that is not in the cache.[click] There is also a new bus transaction, BusUpd. This is what actually performs the update, sending a word written by one processor to all of the other caches that have the block cached.

CSC/ECE 506: Architecture of Parallel Computers

Dragon: Processor-Initiated Transactions

87

E

M

Sc

Sm

PrRdMiss/BusRd(~S)

PrRd/– PrRd/–

PrWr/BusUpd(S)

PrWr/BusUpd(~S)

PrWrMiss/
(BusRd(S);BusUpd)

PrRd/– PrRd/–
PrWr/BusUpd(S) PrWr/–

PrWrMiss/BusRd(~S)

PrRdMiss/BusRd(S)

Fill in the last two
transitions here.

Presenter Notes
Presentation Notes
Here are the four states in the diagram for processor-initiated transactions.[click] When a processor read miss occurs, and the line is not shared, it transitions into State E.[click] When a processor read miss occurs, and the line is shared, it transitions into State Sc.[click] When a processor write miss occurs, and the line is shared, it transitions into State Sm. This is because the referencing processor is the last one to have written the block.[click] When a processor write miss occurs, and the line is not shared, it transitions into State M.[click] When there is a read hit, regardless of what state the line is in, there is no state change, and no bus action.[click] If the line is in State M and the processor writes the line, there’s no state change either.[click] But if the line’s in State Sm when a write occurs and the shared line is asserted, a BusUpd is generated, to update the caches that are sharing the line.[click] And if the line’s in State Sc when a write occurs, but the shared line is not asserted, the cache transitions to state M.[click] However, if the shared line is asserted, it transitions to state Sm.[click] Now, see if you can fill in the last two transitions …

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScJi5SNBHx9C73ADNdy20WZavjE4IJh8jWihDIsiOqW33OXzw/viewform

CSC/ECE 506: Architecture of Parallel Computers

Dragon: Bus-Initiated Transactions

88

E

M

Sc

Sm

BusRd/–
BusUpd/Update

BusRd/–

BusRd/Flush

BusUpd/Update

BusRd/Flush

Presenter Notes
Presentation Notes
Now let’s look at the bus-initiated transitions.[click] If a line is in State E and another processor reads it, it moves to state Sc.[click] If a line is in State M when another processor reads it, it flushes its data to memory and transitions to State Sm.[click] If it’s in State Sm when a BusRd occurs, the same thing happens: It flushes its data to memory.[click] If it’s in Sm and a BusUpd occurs, it transitions to Sc, because it’s no longer the last processor to write the line. It also updates its line accordingly.[click] If it’s in State Sc when a BusRd or a BusUpd occurs, it stays in State Sc. In case of a BusUpd, it updates its line.

CSC/ECE 506: Architecture of Parallel Computers

Dragon State Transition Diagram

89

E Sc

Sm M

PrWr/—
PrRd/—

PrRd/—

PrRd/—

PrRdMiss/
BusRd(S)

PrRdMiss/
BusRd(S) PrWr/—

PrWrMiss/
(BusRd(S);
BusUpd) PrWrMiss/

BusRd(S)

PrWr/
BusUpd(S)

PrWr/BusUpd(S)

BusRd/—

BusRd/Flush

PrRd/— BusUpd/Update

BusUpd/Update

BusRd/Flush

PrWr/BusUpd(S)

PrWr/BusUpd(S)

Presenter Notes
Presentation Notes
We can put both processor-initiated and bus-initiated transitions together on the same diagram. Here, a vertical bar over an “S” indicates that the shared line is not asserted.

CSC/ECE 506: Architecture of Parallel Computers

Dragon Visualization

90

Start state. All caches
empty and main memory
has A = 1.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
When our animation starts, all caches are empty, and the value of A in main memory is 1.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

91

Processor P1 attempts to
read A from its cache.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Processor P1 reads A, but A is not yet cached.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

92

Processor P1 issues a
BusRd.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This induces a BusRd transaction. The memory controller responds with the block.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

93

Main memory returns data
to processor P1 which
updates its cache.

P1

Cache
A = 1 E
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A
P1 BusRd A
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The block reaches P1’s cache. The state of the line is set to E, since the line has not been modified and is not held in any other cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

94

Read operation completes. P1

Cache
A = 1 E
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This completes the read operation.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Writes A = 2

95

Processor P1 writes to its
cache.

P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrWr A

M

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P1 then writes A, changing its value to 2. This is a cache hit, but the cache has to change state to M. [click] No bus transaction is needed, because a block in State E can’t be held in any other cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Writes A = 2

96

Write operation completes. P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The write operation is complete.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 attempts to
read A from its cache.

P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P3 tries to read A.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 issues a
BusRd.

P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This causes a cache miss, so a BusRd is issued.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P1 snoops the
BusRd from processor P3.

P1

Cache
A = 2 Sm

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P1 snoops the read, and changes its state to Sm—because, although P3 is reading the block, P1 is still the most recent processor to write the block.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P1 flushes,
sending updated data to P3
and main memory.

P1

Cache
A = 2 Sm

Snooper

P2

Cache

Snooper

P3

Cache
A = 2 Sc

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRd A
P3 BusRd A
P1 snoops BusRd
P1 Flush

A = 1

Sm

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P1 flushes the block across the bus, where it is picked up by P3. Note that, unlike in the MESI protocol, main memory does not need to be updated, because the cache in State Sm is responsible for updating memory when it finally replaces the block.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Read operation completes. P1

Cache
A = 2 Sm

Snooper

P2

Cache

Snooper

P3

Cache
A = 2 Sc

Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

A = 1

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Then the read operation completes.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Processor P3 writes to its
cache.

P1

Cache
A = 2 Sm

Snooper

P2

Cache

Snooper

P3

Cache
A = 2 Sc

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusUpd
P1 snoops BusUpd

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Next, P3 writes A.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Processor P3 issues a
BusUpd request.

P1

Cache
A = 2 Sm

Snooper

P2

Cache

Snooper

P3

Cache
A = 2 Sc

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusUpd
P1 snoops BusUpd

Note: BusUpdate instead of BusUpgr
(no invalidation is performed)

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This is a write hit, but … [click] because the line is shared, a BusUpd is needed.[click] In the MESI protocol, we would’ve needed a BusUpgr, which would’ve invalidated P1’s cache instead of updating it.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Processor P1 snoops the
BusUpd and updates its
cache.

P1

Cache
A = 3 Sc

Snooper

P2

Cache

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusUpgr
P1 snoops BusUpd

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The BusUpd is snooped by P1, which updates its cache. Meanwhile, P3's write completes, changing the cached value to 3. P3 changes the line’s state to Sm, since it’s now the most recent writer of the line.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Write operation completes. P1

Cache
A = 3 Sc

Snooper

P2

Cache

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
And the write operation completes.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

Processor P1 reads from its
cache.

P1

Cache
A = 3 Sc

Snooper

P2

Cache

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P1 reads the value of A from its cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

Processor P1 reads from its
cache.

P1

Cache
A = 3 Sc

Snooper

P2

Cache

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A

This is a miss in the
MESI and MSI protocols.

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This is a read hit, so no bus activity is needed.[click] In the invalidation protocols, it would’ve been a miss.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

Read operation completes. P1

Cache
A = 3 Sc

Snooper

P2

Cache

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The read operation is now complete.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 reads from its
cache.

P1

Cache
A = 3 Sc

Snooper

P2

Cache

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now, P3 reads A from its cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 reads from its
cache.

P1

Cache
A = 3 Sc

Snooper

P2

Cache

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRd A

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This is a cache hit, so the cache simply returns the data. No bus transaction takes place.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Read operation completes. P1

Cache
A = 3 Sc

Snooper

P2

Cache

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The read operation completes.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Processor P2 reads from its
cache.

P1

Cache
A = 3 Sc

Snooper

P2

Cache

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRd A
P2 BusRd A
P3 Flush

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P2 finally gets into the act, by issuing a read for A.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Processor P2 issues a
BusRd request.

P1

Cache
A = 3 Sc

Snooper

P2

Cache

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRd A
P2 BusRd A
P3 Flush

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Since it's a cache miss, it requires a bus transaction, namely a BusRd.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Main memory controller
observes the BusRd.

P1

Cache
A = 3 Sc

Snooper

P2

Cache

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRd A
P2 BusRd A
P3 Flush

A = 3 Sc

Note: Only the cache in state Sm is
responsible for cache-to-cache transfer

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P3 flushes the block out on the bus, where P2 picks it up. [click] P3 is the one to do the flush because it’s the cache in State Sm.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Operation completes. P1

Cache
A = 3 Sc

Snooper

P2

Cache
A = 3 Sc

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The read operation is complete. Now all three caches have valid copies of the block. All are in State Sc except P3, which was the most recent processor to write the line.

CSC/ECE 506: Architecture of Parallel Computers

P1 Replaces A

A evicted from P1 P1

Cache
A = 3 Sc

Snooper

P2

Cache
A = 3 Sc

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

A = 3 Sc

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Suppose P1 replaces the line containing A. No bus action is needed, because its cache was in State Sc.

CSC/ECE 506: Architecture of Parallel Computers

P1 Replaces A

A evicted from P3. P1

Cache

Snooper

P2

Cache
A = 3 Sc

Snooper

P3

Cache
A = 3 Sm

Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

A = 3 Sc

P3 replaces X
Owner responsible
for writing back to memory

vs. MSI or MESI where
write-back only when
the line is in M state MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
But if P3 replaces the line, it has to write it back to memory, because it’s in State Sm.[click] If the line were in State M when it was replaced, it’d also have to be written back. So a replaced line is flushed to memory when it was in State M or Sm. Contrast this with the invalidation protocols, which only needed to flush a line to memory when the line is in State M.

CSC/ECE 506: Architecture of Parallel Computers

Dragon Example

118

Proc
Action

State P1 State P2 State P3 Bus Action Data from

R1 E – – BusRd Mem

W1 M – – – Own cache

R3 Sm – Sc BusRd/Flush P1 cache

W3 Sc – Sm BusUpd/Upd Own cache

R1 Sc – Sm – Own cache
R3 Sc – Sm – Own cache

R2 Sc Sc Sm BusRd/Flush P3 cache

Presenter Notes
Presentation Notes
This table shows which caches have the block in which state after each instruction.It also shows which bus action takes place. Note that there are no BusRdXs. The difference between a BusRd and a BusRdX is that the latter invalidates sharers. But there are no invalidations in an update protocol.Note also that there is only one read from memory. In an update protocol, as long as the block is in some cache, the cache, not memory, is responsible for supplying the block.

CSC/ECE 506: Architecture of Parallel Computers

Lower-Level Protocol Choices
• Can shared-modified state be eliminated?

• If memory is updated too on BusUpd transactions (DEC Firefly)
• Dragon protocol doesn’t (assumes DRAM memory slow to update)

• Should replacement of an Sc block be broadcast?
• Would allow last copy to go to Exclusive state and not generate updates
• Replacement bus transaction isn’t in critical path, but later update may be

• Shouldn’t update local copy on write hit before controller gets bus
• Can mess up serialization

• Coherence, consistency considerations much like write-through
case

• In general, there are many subtle race conditions in protocols.

119

Presenter Notes
Presentation Notes
We’ve seen the difference between Sm and Sc. Sm is responsible for updating memory when a line is replaced. But if main memory is always updated when a BusUpd transaction occurs, then there’s no need for separate Sm and Sc states, and the protocol can get by with a single Shared state.The downside is that this causes a lot more memory transactions. This can slow down the system, especially when a lot of processors are writing to the same memory.[click] As we’ve just seen, the Dragon protocol allows an Sc line to be replaced “silently,” without any bus activity.If we did let other caches know when an Sc line was replaced, they could test the shared line and move to State E if there were no other sharers.The advantage of being in State E is that if the line is later written, it goes to State M, where it doesn’t have to generate BusUpd transactions. So, at the cost of broadcasting replacements of Sc lines, we are able to avoid update transactions on lines that used to be shared, but no longer are.And broadcasting replacements isn’t time critical. If a cache doesn’t process the replacement right away, there’s no harm. On the other hand, if it doesn’t process an update right away, it may end up doing updates out of order, which is a problem.So, a three-state update protocol may have performance advantages.[click] Another thing to notice is that a cache can’t update its local copy of a word, and then request the bus to send out a BusUpd.If it does, then two caches could each update their local copy and then request the bus. They would then see the two writes in opposite orders, which would mess up serialization.[click] We won’t go through a detailed consideration of whether this protocol provides cache coherence and memory consistency. The argument would be very similar to the reasoning for write-through.[click] The issue of updating a local cache before doing a BusUpd is a race condition. There are many race conditions in protocols; we don’t have time to consider all of them here.

CSC/ECE 506: Architecture of Parallel Computers

Lecture 15 Outline

• MSI protocol
• MESI protocol
• Dragon protocol
• Firefly protocol

120

Inval-
idate Update

3-state MSI Firefly

4-state MESI Dragon

Presenter Notes
Presentation Notes
Now let’s take a look at the Firefly protocol. As shown in the table at the lower right of the slide, it is a 3-state update protocol.

CSC/ECE 506: Architecture of Parallel Computers

A Three-State Update Protocol
• Whenever a bus update is generated, suppose

that main memory—as well as the caches—
updates its contents.

• Then which state don’t we need?
• What’s the advantage, then, of having the fourth

state?

• The Firefly protocol, named after a
multiprocessor workstation developed
by DEC, is an example of such a protocol.

Presenter Notes
Presentation Notes
When a BusUpd transaction occurs, the Dragon protocol updates its caches, but not main memory. Suppose that main memory was also updated.Then which state don’t we need?Our 3-state update protocol is the Firefly protocol, named after a DEC workstation of the mid-1990s.

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSdTpWv2RojZO3zguH0Xb1qi8Pe6nFfGZRAEP8a9d2NeTKG3ZQ/viewform

CSC/ECE 506: Architecture of Parallel Computers

Firefly State-Transition Diagram

• Answer some questions about this diagram.

V D

S

CRM — CPU read miss
CWM — CPU write miss
CWH — CPU write hit
BR — bus read
BW — bus write

Key:

Processor-induced transitions
Bus-induced transitions

CWMx

CWH√ Read hits do not cause state
transitions and are not shown.

CRMx

A “√” following a transition means
SharedLine was asserted. An “x”
means it was not.

 BR,
BW

BR

CWHx

BR, BW

CRM√,
CWM√

CWH

Presenter Notes
Presentation Notes
The three states are …Valid (V): This is the same as the Exclusive state in Dragon.Shared (S): This the same as S in our invalidation protocols. Multiple caches may be holding the block, and main memory is up to date.Dirty (D): This is the same as the M state in our other protocols. Only one processor has the block cached, and it has been written to since being brought in from memory.If there is a processor read miss (called CRM, for “CPU read miss” in this diagram), and the shared line is not asserted, the block is brought into the cache in Valid state.If there is a CPU read miss and the shared line is asserted, the block is cached in state M.If there is a CPU write miss and the shared line is asserted, the change is written through to main memory, and the block is cached in State M.If there is a CPU write miss and the shared line is not asserted, the block is cached in State D. In this case, the write is not written through to main memory.If the block is in State V and there is a CPU write hit, the block transitions to State D.If the block is in State D, and there is a CPU write hit, the block stays in State D.If the block is in State S and there’s a CPU write hit, what happens depends on whether the shared line is asserted.If it is, the block stays in State S, and the change is written through.If it’s not, the change is written through, and the block transitions to State V (since it’s not being shared any longer).If there’s a CPU read hit, the block stays in whatever state it is already in—just like in the Dragon protocol.Now, let’s consider the bus-initiated transitions.If the block is in State S, and another processor reads or writes it (that is, a bus read or a bus write occurs), the block stays in State S.If the block is in State D, and another processor reads or writes it, it transitions into State S. As we’ve already said, the change is written through to main memory.If the block is in State V and another processor reads it, it goes into State S. What happens if another processor writes it? … Well, we know it won’t be invalidated, because this is not an invalidation protocol. So it must be updated, and since it is now being shared, it also goes into State S. (That is not shown on the diagram, however.)

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSduzTI1HtoJ-lAtS8n5qqTGDnl9k8s_MK8L_bM5uQH5JDXl5A/viewform

CSC/ECE 506: Architecture of Parallel Computers

Firefly Visualization

123

Start state. All caches
empty and main memory
has A = 1.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
When our animation starts, all caches are empty, and the value of A in main memory is 1.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

124

Processor P1 attempts to
read A from its cache.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRdMiss(~S)
P1 BusRd A
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Processor P1 reads A, but A is not yet cached.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

125

Processor P1 issues a
BusRd.

P1

Cache

Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRdMiss(~S)
P1 BusRd A
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This induces a BusRd transaction. The memory controller responds with the block.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

126

Main memory returns data
to processor P1 which
updates its cache.

P1

Cache
A = 1 V
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrRdMiss(~S)
P1 BusRd A
Mem returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The block reaches P1’s cache. The state of the line is set to V, since the line has not been modified and is not held in any other cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

127

Read operation completes. P1

Cache
A = 1 V
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This completes the read operation.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Writes A = 2

128

Processor P1 writes to its
cache.

P1

Cache
A = 2 M
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P1 PrWr A

D

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P1 then writes A, changing its value to 2. This is a cache hit, but the cache has to change state to D.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Writes A = 2

129

Write operation completes. P1

Cache
A = 2 D
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The write operation completes.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 attempts to
read A from its cache.

P1

Cache
A = 2 D
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRdMiss(S)
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P3 tries to read A.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 issues a
BusRd.

P1

Cache
A = 2 D
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRdMiss(S)
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This causes a cache miss, so a BusRd is issued.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P1 snoops the
BusRd from processor P3.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache

Snooper

Main memory

A = 1
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRdMiss(S)
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P1 snoops the read, and changes its state to S.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P1 flushes,
sending updated data to P3
and main memory.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRdMiss(S)
P3 BusRd A
P1 snoops BusRd
P1 Flush MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P1 flushes the block across the bus, where it is picked up by main memory and P3. Note that, unlike in the Dragon protocol, main memory does need to be updated, because the protocol does not keep track of which cache is responsible for updating memory when it finally replaces the block.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Read operation completes. P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Then the read operation completes.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Processor P3 writes to its
cache.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusUpd
P1 snoops BusUpd

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Next, P3 writes A.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Processor P3 issues a
BusUpd request.

P1

Cache
A = 2 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 2 S
Snooper

Main memory

A = 2
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusUpd
P1 snoops BusUpd

Note: BusUpd
MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This is a write hit, but because the line is shared, a BusUpd is needed.[click] This BusUpd goes to memory as well as P1’s cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Processor P1 snoops the
BusUpd and updates its
cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrWr A
P3 BusUpd
P1 snoops BusUpd

Cache
A = 3 S
Snooper

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
When P1 snoops the bus update, it updates its cache. Meanwhile, P3's write completes, changing the cached value to 3. Both P1 and P3 remain in State S.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Writes A = 3

Write operation completes. P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
And the write operation completes.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

Processor P1 reads from its
cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRdHit
P3 returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P1 reads the value of A from its cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P1 Reads A

Processor P1 reads from its
cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRdHit
P3 returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This is a read hit, so no bus activity is needed.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 reads from its
cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRdHit
P3 returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now, P3 reads A from its cache.

CSC/ECE 506: Architecture of Parallel Computers

Processor P3 Reads A

Processor P3 returns valid
data from its cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P3 PrRdHit
P3 returns data

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
This is a cache hit, so the cache simply returns the data. No bus transaction takes place.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Processor P2 reads from its
cache.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRdMiss(S)
P2 BusRd A
P1 Flush

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Now P2 finally gets into the act, by issuing a read for A.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Processor P2 issues a
BusRd request.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRdMiss(S)
P2 BusRd A
P1 Flush

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
Since it's a cache miss, it requires a bus transaction, namely a BusRd.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Main memory controller
observes the BusRd.

P1

Cache
A = 3 S
Snooper

P2

Cache

Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

P2 PrRdMis(S)
P2 BusRd A
P1 Flush

A = 3 S

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
P1 and P3 flush the block out on the bus, where P2 picks it up. Since the shared line was asserted, P2 changes into State S.

CSC/ECE 506: Architecture of Parallel Computers

Processor P2 Reads A

Operation completes. P1

Cache
A = 3 S
Snooper

P2

Cache
A = 3 S
Snooper

P3

Cache
A = 3 S
Snooper

Main memory

A = 3
Controller

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

Bus

MSI Firefly

MESI Dragon

Inv. Upd.

3

4

Presenter Notes
Presentation Notes
The read operation is complete. Now all three caches have valid copies of the block in State S.

CSC/ECE 506: Architecture of Parallel Computers

Firefly Example

147

Proc
Action

State P1 State P2 State P3 Bus Action Data From

R1 V – – BusRd Mem

W1 D – – – Own cache

R3 S – S BusRd/Flush P1 cache

W3 S – S BusUpd Own cache

R1 S – S - Own cache

R3 S – S – Own cache

R2 S S S BusRd/Flush P1 Cache

Presenter Notes
Presentation Notes
This table shows which caches have the block in which state after each instruction.The first difference we notice from Dragon is that when P3 reads the line, it goes into State S, not into a special Sm state.

CSC/ECE 506: Architecture of Parallel Computers

Firefly Example

148

Proc
Action

State P1 State P2 State P3 Bus Action Data From

R1 V – – BusRd Mem

W1 D – – – Own cache

R3 S – S BusRd/Flush P1 cache

W3 S – S BusUpd Own cache

R1 S – S - Own cache

R3 S – S – Own cache

R2 S S S BusRd/Flush P1 Cache

Presenter Notes
Presentation Notes
After P3 writes the line, it stays in State S, instead of going into Sm.And when a cache-to-cache transfer takes place, the data doesn’t necessarily come from the last cache to write to the line.This completes our consideration of the Firefly protocol.

CSC/ECE 506: Architecture of Parallel Computers

Assessing Protocol Tradeoffs
• In the next lecture, we will look at results of comparing

protocols by simulation.
• Methodology:

• Use simulator; default 1MB, 4-way cache, 64-byte block, 16
processors. Some runs use 64K cache.

• Focus on frequencies, not end performance for now
• transcends architectural details, but not what we’re really

after
• Use idealized memory performance model to avoid changes

of reference interleaving across processors with machine
parameters

• Cheap simulation: no need to model contention

149

	Other Bus-Based Coherence Protocols��Lecture 15�(Chapter 7, cont.)��E. F. Gehringer, �based on slides by Yan Solihin
	Lecture 15 Outline
	Basic MSI Writeback Invalidation Protocol
	State-Transition Diagrams
	MSI: Processor-Initiated Transactions
	MSI: Bus-Initiated Transactions
	MSI State Transition Diagram
	Lecture 15 Outline
	MSI Visualization – Start State
	MSI: Processor P1 Reads A
	MSI: Processor P1 Reads A
	MSI: Processor P1 Reads A
	MSI: Processor P1 Reads A
	MSI: Processor P1 Writes A = 2
	MSI: Processor P1 Writes A = 2
	MSI: Processor P1 Writes A = 2
	MSI: Processor P3 Reads A
	MSI: Processor P3 Reads A
	MSI: Processor P3 Reads A
	MSI: Processor P3 Reads A
	MSI: Processor P3 Reads A
	MSI: Processor P3 Writes A = 3
	MSI: Processor P3 Writes A = 3
	MSI: Processor P3 Writes A = 3
	MSI: Processor P3 Writes A = 3
	MSI: Processor P1 Reads A
	MSI: Processor P1 Reads A
	MSI: Processor P1 Reads A
	MSI: Processor P1 Reads A
	MSI: Processor P1 Reads A
	MSI: Processor P3 Reads A
	MSI: Processor P3 Reads A
	MSI: Processor P3 Reads A
	MSI: Processor P2 Reads A
	MSI: Processor P2 Reads A
	MSI: Processor P2 Reads A
	MSI: Processor P2 Reads A
	MSI: Processor P2 Reads A
	MSI Example: Rd/Wr to a single line
	Notes on MSI Protocol
	Notes on MSI Protocol
	Notes on MSI Protocol
	MSI: Coherence and SC
	Lecture 15 Outline
	Lower-Level Protocol Choice
	MESI (4-state) Invalidation Protocol
	MESI: Processor-Initiated Transactions
	MESI: Bus-Initiated Transactions
	MESI State Transition Diagram
	MESI Visualization
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Writes A = 2
	Processor P1 Writes A = 2
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Writes A = 3
	Processor P3 Writes A = 3
	Processor P3 Writes A = 3
	Processor P3 Writes A = 3
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P2 Reads A
	Processor P2 Reads A
	Processor P2 Reads A
	Processor P2 Reads A
	MESI Example (Cache-to-Cache Transfer)
	Change from MSI (Cache-to-Cache Transfer)
	Slide Number 80
	Slide Number 81
	MESI Example (Cache-to-Cache Transfer+BusUpgr)
	MESI Example (Cache-to-Cache Transfer+BusUpgr)
	Lower-Level Protocol Choices
	Lecture 15 Outline
	Dragon Writeback Update Protocol
	Dragon: Processor-Initiated Transactions
	Dragon: Bus-Initiated Transactions
	Dragon State Transition Diagram
	Dragon Visualization
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Writes A = 2
	Processor P1 Writes A = 2
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Writes A = 3
	Processor P3 Writes A = 3
	Processor P3 Writes A = 3
	Processor P3 Writes A = 3
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P2 Reads A
	Processor P2 Reads A
	Processor P2 Reads A
	Processor P2 Reads A
	P1 Replaces A
	P1 Replaces A
	Dragon Example
	Lower-Level Protocol Choices
	Lecture 15 Outline
	A Three-State Update Protocol
	Firefly State-Transition Diagram
	Firefly Visualization
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P1 Writes A = 2
	Processor P1 Writes A = 2
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P3 Writes A = 3
	Processor P3 Writes A = 3
	Processor P3 Writes A = 3
	Processor P3 Writes A = 3
	Processor P1 Reads A
	Processor P1 Reads A
	Processor P3 Reads A
	Processor P3 Reads A
	Processor P2 Reads A
	Processor P2 Reads A
	Processor P2 Reads A
	Processor P2 Reads A
	Firefly Example
	Firefly Example
	Assessing Protocol Tradeoffs

