
CSC/ECE 506: Architecture of Parallel Computers

Course Overview

Lecture 1

(Chapter 1)

http://go.ncsu.edu/ece506

1

http://go.ncsu.edu/ece506

CSC/ECE 506: Architecture of Parallel Computers

Learning Objectives

1. Understand the problem of race conditions in

concurrent systems,

2. Learn how to decompose a program for parallel

execution,

3. Be able to write simple parallel programs in the

important programming models,

4. Understand the operation of common cache-

coherence protocols, both bus-based and network-

based, and

5. Learn about common memory-consistency models,

and appreciate the advantages and disadvantages

of each.
2

CSC/ECE 506: Architecture of Parallel Computers

Textbook

3

CSC/ECE 506: Architecture of Parallel Computers

“Attendance” requirement

4

• You are required to “attend” 20 of the 26 classes.

• 16 of these must be in the classroom.

• “Attend” → Respond intelligently to  ½ of Google forms

• Each one not passed  –0.5% on semester average.

• You are required to pass 24 of 25 daily quizzes,

plus the Syllabus Quiz. First one due Wednesday!

• “Passed”  score of  80%

• Each one not passed  –0.5% on semester average.

• You are required to team with 3 students.

• Each teammate you are lacking

 –0.5% on semester average

CSC/ECE 506: Architecture of Parallel Computers

Playposit quizzes

• 3 lectures will be videos to watch.

• They have embedded quizzes.

• Do the quizzes to get attendance credit.

CSC/ECE 506: Architecture of Parallel Computers

Zoom session

http://go.ncsu.edu/506zoom
If you join the Zoom session from the

classroom, be sure to let me know.

6

CSC/ECE 506: Architecture of Parallel Computers

Grading

7

CSC/ECE 506: Architecture of Parallel Computers

Homework

• 4 programs

• 3 problem sets*

• 1 peer-reviewed madeup problem

8

CSC/ECE 506: Architecture of Parallel Computers

Tests

• Two 120-minute midterm tests (10%, 15%

of grade)

• 150-minute final (24% of grade)

• Open book, open notes

• No computers or communication devices

9

CSC/ECE 506: Architecture of Parallel Computers

Extra Credit

• All activities for which extra credit is given

must help other students to learn the course

material.

• Examples
– Making outstanding contributions to answering other

students' questions on Piazza

– Contributing useful practice problems via Peerwise

– Doing extra peer reviews of madeup problems submitted to

Expertiza

– Suggesting Web or print resources that will help other students

write useful madeup problems

10

https://piazza.com/class/lch4dcdwgjhoz
https://peerwise.cs.auckland.ac.nz/

CSC/ECE 506: Architecture of Parallel Computers

The Staff

• Instructor

11

CSC/ECE 506: Architecture of Parallel Computers

12

CSC/ECE 506: Architecture of Parallel Computers

TAs

13

Jianxun “George” Wang Sharan Jilla

CSC/ECE 506: Architecture of Parallel Computers
14

Outline for Lecture 1

▪ Architectural trends

▪ Types of parallelism

▪ Flynn taxonomy

▪ Scope of CSC/ECE 506

CSC/ECE 506: Architecture of Parallel Computers
15

Key Points

• More and more components can be integrated on a single
chip

• Speed of integration tracks Moore’s law, doubling every 18–
24 months.

• Exercise: Look up how the number of transistors per chip has
changed, esp. since 2006. Submit here.

• Until recently, performance tracked speed of integration

• At the architectural level, two techniques facilitated this:

– Cache memory

– Instruction-level parallelism

• Performance gain from uniprocessor system was high
enough that multiprocessor systems were not viable for most
uses.

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScdi8jL2dcPzk4_uQGFUAfZm35LPS3KjuzWxtXXO8iFxPxwzA/viewform

CSC/ECE 506: Architecture of Parallel Computers
16

Illustration

• 100-processor system with perfect speedup

• Compared to a single processor system

– Year 1: 100x faster

– Year 2: 62.5x faster

– Year 3: 39x faster

– …

– Year 10: 0.9x faster

• Single-processor performance catches up in just a few

years!

• Even worse

– It takes longer to develop a multiprocessor system

– Low volume means prices must be very high

– High prices delay adoption

– Perfect speedup is unattainable

CSC/ECE 506: Architecture of Parallel Computers
17

How did uniprocessor performance grow so fast?

• ≈ half from circuit improvement (smaller

transistors, faster clock, etc.)

• ≈ half from architecture/organization:

• Instruction-level parallelism (ILP)

– Pipelining: RISC, CISC with RISC back-end

– Superscalar

– Out-of-order execution

• Memory hierarchy (caches)

– Exploit spatial and temporal locality

– Multiple cache levels

CSC/ECE 506: Architecture of Parallel Computers
18

But uniprocessor perf. growth has stalled

▪ Source of performance growth had been ILP
▪ Parallel execution of independent instructions from a

single thread

▪ But ILP improvement has slowed abruptly
▪ Memory wall: Processor speed grows at 55%/year,

memory speed grows at 7% per year

▪ ILP wall: achieving higher ILP requires quadratically
increasing complexity (and power)

▪ Power efficiency

▪ Thermal packaging limit vs. cost

CSC/ECE 506: Architecture of Parallel Computers
19

• Instruction level (cf. ECE 563)

– Pipelining

Types of parallelism

A (a load)

B

C

IF ID MEMEX WB

IF ID MEMEX WB

IF ID MEMEX WB

CSC/ECE 506: Architecture of Parallel Computers
20

Types of parallelism, cont.

• Superscalar/VLIW

• Original:

• Schedule as:

+ Moderate degree of parallelism

– Requires fast communication (register level)

LD F0, 34(R2)

ADDD F4, F0, F2

LD F7, 45(R3)

ADDD F8, F7, F6

LD F0, 34(R2) | LD F7, 45(R3)

ADDD F4, F0, F2 | ADDD F8, F0, F6

CSC/ECE 506: Architecture of Parallel Computers
21

Why ILP is slowing

• Number of pipeline stages is already deep (≈ 20–30

stages)

– But critical dependence loops do not change

– Memory latency requires more clock cycles to satisfy

• Branch-prediction accuracy is already > 90%

– Hard to improve it even more

• Cache size

– Effective, but also shows diminishing returns

– In general, size must be doubled to reduce miss rate by half.

CSC/ECE 506: Architecture of Parallel Computers
22

Current trends: multicore and manycore

Aspect Intel
Clovertown

AMD
Barcelona

IBM Cell

cores 4 4 8+1

Clock
frequency

2.66 GHz 2.3 GHz 3.2 GHz

Core type OOO
Superscalar

OOO
Superscalar

2-issue SIMD

Caches 2x4MB L2 512KB L2
(private),
2MB L3 (sh’d)

256KB local
store

Chip power 120 watts 95 watts 100 watts

Exercise: Browse the Web (or the textbook ☺) for information on more
recent processors, and for each processor, fill out this form. (You can view
the submissions.)

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScSMVe4Xxd78atts6ov2QF9qMQqkKgIOXkLT3xyK48eARJ9Ug/viewform
https://docs.google.com/spreadsheets/d/1nJxXQKMKUO5Ww05PF25VpHP6CLfe8Pkxo3sdYC1XG44/edit?usp=sharing

CSC/ECE 506: Architecture of Parallel Computers
23

Scope of CSC/ECE 506

• Parallelism

– Loop-level and task-level parallelism

• Flynn taxonomy

– SIMD (vector architecture)

– MIMD

• Shared memory machines (SMP and DSM)

• Clusters

• Programming Model

– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers
24

Loop-level parallelism

• Sometimes each iteration can be performed
independently.

• Sometimes iterations cannot be performed independently
  no loop-level parallelism.

+ Very high parallelism > 1K

+ Often easy to achieve load balance

– Some loops are not parallel

– Some apps do not have many loops

for (i=0; i<8; i++)

a[i] = b[i] + c[i];

for (i=0; i<8; i++)

a[i] = b[i] + a[i-1];

CSC/ECE 506: Architecture of Parallel Computers
25

Task-level parallelism

• Arbitrary code segments in a single program

• Across loops:

• Subroutines:

• Threads: e.g., editor: GUI, printing, parsing

+ Larger granularity  low overheads, communication

– Low degree of parallelism

– Hard to balance

…

for (i=0; i<n; i++)

sum = sum + a[i];

for (i=0; i<n; i++)

prod = prod * a[i];

…

Cost = getCost();

A = computeSum();

B = A + Cost;

CSC/ECE 506: Architecture of Parallel Computers
26

Program-level parallelism

• Various independent programs execute together

• gmake:

– gcc –c code1.c // assign to proc1

– gcc –c code2.c // assign to proc2

– gcc –c main.c // assign to proc3

– gcc main.o code1.o code2.o

+ No communication

– Hard to balance

– Few opportunities

CSC/ECE 506: Architecture of Parallel Computers
27

Scope of CSC/ECE 506

• Parallelism

– Loop-level and task-level parallelism

• Flynn taxonomy

– SIMD (vector architecture)

– MIMD

• Shared-memory machines (SMP and DSM)

• Clusters

• Programming Model

– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers

Taxonomy of parallel computers

The Flynn taxonomy

• Single or multiple instruction streams.

• Single or multiple data streams.

• 1. SISD machine

– Only one instruction fetch stream

– Some not-too-ancient laptops or desktops

Control
unit

Instruction

stream

Data

stream
ALU

CSC/ECE 506: Architecture of Parallel Computers
29

SIMD

• Examples: Vector processors, SIMD extensions (MMX),

GPUs

• A single instruction operates on multiple data items.

Control
unit

Instruction

stream

ALU 2

ALU 1

ALU

n

Data

stream
1

Data

stream
2

Data

stream

n

SISD:

for (i=0; i<8; i++)

a[i] = b[i] + c[i];

SIMD:

a = b + c; // vector addition

CSC/ECE 506: Architecture of Parallel Computers
30

MISD

• Example: CMU Warp

• Systolic arrays

Control
unit 2

ALU 2

ALU 1

ALU

n

Instruction

stream 1

stream 2

stream

n

Data
stream

Instruction

Instruction

Control
unit 1

Control
unit n

CSC/ECE 506: Architecture of Parallel Computers
31

Systolic arrays (contd.)

– Practical realizations (e.g. iWARP) use quite general processors

• Enable variety of algorithms on same hardware

– But dedicated interconnect channels

• Data transfer directly from register to register across channel

– Specialized, and same problems as SIMD

• General-purpose systems work well for same algorithms (locality etc.)

y(i) = w1 ´ x(i) + w2 ´ x(i + 1) + w3 ´ x(i + 2) + w4 ´ x(i + 3)

x8

y3 y2 y1

x7
x6

x5
x4

x3

w4

x2

x

w

x1

w3 w2 w1

xin

yin

xout

yout

xout = x

yout = yin + w ´ xin
x = xin

Example: Systolic array for 1-D convolution

CSC/ECE 506: Architecture of Parallel Computers
32

MIMD

• Independent processors connected together to

form a multiprocessor system.

• Physical organization

– Determines which memory hierarchy level is shared

• Programming abstraction

– Shared Memory:

• on a chip: Chip Multiprocessor (CMP)

• Interconnected by a bus: Symmetric multiprocessors (SMP)

• Point-to-point interconnection: Distributed Shared Memory

(DSM)

– Distributed Memory:

• Clusters, Grid

CSC/ECE 506: Architecture of Parallel Computers
33

MIMD Physical Organization

P

caches

M

P
Shared-cache architecture:
- CMP (or Simultaneous Multi-Threading)
- e.g.: Pentium 4 chip, IBM Power4 chip, Sun

Niagara, Pentium D, etc.
- Implies shared-memory hardware

…

P

caches

M

P

…caches

Network

UMA (Uniform Memory Access)
Shared Memory :
- Pentium Pro Quad, Sun Enterprise,

etc.
- What interconnection network?

- Bus
- Multistage
- Crossbar
- etc.

- Implies shared-memory hardware

CSC/ECE 506: Architecture of Parallel Computers
34

MIMD Physical Organization (2)

P

caches

M
…

Network

P

caches

M

NUMA (Non-Uniform Memory Access)
Shared Memory :
- SGI Origin, Altix, IBM p690,

AMD Hammer-based system
- What interconnection network?

- Crossbar
- Mesh
- Hypercube
- etc.

CSC/ECE 506: Architecture of Parallel Computers
35

Scope of CSC/ECE 506

• Parallelism

– Loop-level and task-level parallelism

• Flynn taxonomy

– MIMD

• Shared memory machines (SMP and DSM)

• Programming Model

– Shared memory

– Message-passing

– Hybrid

– Data parallel

CSC/ECE 506: Architecture of Parallel Computers
36

Programming models: shared memory

• Shared Memory / Shared Address Space:

– Each processor can see the entire memory

– Programming model = thread programming in

uniprocessor systems

P P P …

Shared M

CSC/ECE 506: Architecture of Parallel Computers

37

Programming models: message-passing

• Distributed Memory / Message Passing / Multiple

Address Space:

– A processor can directly access only its local memory.

– All communication happens by explicit messages.

P

M

P

M

P

M

P

M

CSC/ECE 506: Architecture of Parallel Computers
38

Programming models: data parallel

• Programming model
– Operations performed in parallel on each element of

data structure

– Logically single thread of control, performs sequential
or parallel steps

– Conceptually, a processor associated with each data
element

Control
unit

Instruction

stream

ALU 2

ALU 1

ALU

n

Data

stream
1

Data

stream
2

Data

stream

n

CSC/ECE 506: Architecture of Parallel Computers

Data parallel (cont.)

• Architectural model
– Array of many simple, cheap processing elements

(PEs) each with little memory
• Processing elements don’t sequence through instructions

– PEs are attached to a control processor that issues
instructions

– Specialized and general communication, cheap global
synchronization

• Original motivation
– Matches simple differential equation solvers

– Centralize high cost of instruction fetch/sequencing

39

CSC/ECE 506: Architecture of Parallel Computers
40

Top 500 supercomputers

• http://www.top500.org

• Let’s look at the Earth Simulator, #1 in 2004

• Hardware:

– 5,120 (640 8-way nodes) 500 MHz NEC CPUs

– 8 GFLOPS per CPU (41 TFLOPS total)

• 30s TFLOPS sustained performance!

– 10 TB total memory

• Now (Nov. 2021)

– Fugaku, at Fujitsu RIKEN Ctr. for Computational Science, is #1

– 7.6 million cores

– 5.1 PB total memory

– 442.0 TFLOP/s max performance (Rmax)

– 537.2 TFLOP/s peak performance (Rpeak)

http://www.top500.org/

CSC/ECE 506: Architecture of Parallel Computers

Exploring the Top 500 list …

• Lists > Top500 > November 2022 > The list

– See a list of the top systems

• Statistics > List Statistics > Vendors

– Lenovo is top vendor, more than double HPE

• Statistics > List Statistics > Architecture

– Clusters are overwhelmingly dominant

• Statistics > Developm’t over Time > Countries

– China comes from nowhere to lead in # of

systems

– But US still leads in performance share

41

CSC/ECE 506: Architecture of Parallel Computers
42

Exercise

• Go to http://www.top500.org and look at the Lists and

Statistics menus in the top menu bar.

• From the Statistics dropdown,

– choose either List Statistics or Development over time,

– then select one of the statistics, e.g., Vendors, Processor

Architecture, and

– examine what kind of systems are prevalent. Then do the same

for earlier lists, and report on the trend.

• You can go all the way back to the first list from 1993.

• Submit your results here.

http://www.top500.org/
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSeVOehZutHH_uJhn_isQk_SzzICAYXDlcM_SOUG1XV3kZH0hA/viewform

	Slide 1: Course Overview
	Slide 2: Learning Objectives
	Slide 3: Textbook
	Slide 4: “Attendance” requirement
	Slide 5: Playposit quizzes
	Slide 6: Zoom session
	Slide 7: Grading
	Slide 8: Homework
	Slide 9: Tests
	Slide 10: Extra Credit
	Slide 11: The Staff
	Slide 12
	Slide 13: TAs
	Slide 14: Outline for Lecture 1
	Slide 15: Key Points
	Slide 16: Illustration
	Slide 17: How did uniprocessor performance grow so fast?
	Slide 18: But uniprocessor perf. growth has stalled
	Slide 19
	Slide 20: Types of parallelism, cont.
	Slide 21: Why ILP is slowing
	Slide 22: Current trends: multicore and manycore
	Slide 23: Scope of CSC/ECE 506
	Slide 24: Loop-level parallelism
	Slide 25: Task-level parallelism
	Slide 26: Program-level parallelism
	Slide 27: Scope of CSC/ECE 506
	Slide 28: Taxonomy of parallel computers
	Slide 29: SIMD
	Slide 30: MISD
	Slide 31: Systolic arrays (contd.)
	Slide 32: MIMD
	Slide 33: MIMD Physical Organization
	Slide 34: MIMD Physical Organization (2)
	Slide 35: Scope of CSC/ECE 506
	Slide 36: Programming models: shared memory
	Slide 37: Programming models: message-passing
	Slide 38: Programming models: data parallel
	Slide 39: Data parallel (cont.)
	Slide 40: Top 500 supercomputers
	Slide 41: Exploring the Top 500 list …
	Slide 42: Exercise

