
CSC/ECE 506: Architecture of Parallel Computers

Course Overview

Lecture 1

(Chapter 1)

http://go.ncsu.edu/ece506

1

http://go.ncsu.edu/ece506

CSC/ECE 506: Architecture of Parallel Computers

Learning Objectives

1. Understand the problem of race conditions in
concurrent systems,

2. Learn how to decompose a program for parallel
execution,

3. Be able to write simple parallel programs in the
important programming models,

4. Understand the operation of common cache-
coherence protocols, both bus-based and network-
based, and

5. Learn about common memory-consistency models,
and appreciate the advantages and disadvantages
of each.

2

CSC/ECE 506: Architecture of Parallel Computers

Textbook

3

CSC/ECE 506: Architecture of Parallel Computers

4

16 of these must be in the classroom.

Respond intelligently to ½ of Google forms

Each one not passed 0.5% on semester average.

You are required to pass 24 of 25 daily quizzes,
plus the Syllabus Quiz. First one due Wednesday!

score of 80%

Each one not passed 0.5% on semester average.

You are required to team with 3 students.
Each teammate you are lacking

0.5% on semester average

CSC/ECE 506: Architecture of Parallel Computers

Playposit quizzes

3 lectures will be videos to watch.

They have embedded quizzes.
Do the quizzes to get attendance credit.

CSC/ECE 506: Architecture of Parallel Computers

Zoom session

http://go.ncsu.edu/506zoom
If you join the Zoom session from the
classroom, be sure to let me know.

6

CSC/ECE 506: Architecture of Parallel Computers

Grading

7

CSC/ECE 506: Architecture of Parallel Computers

Homework

4 programs

3 problem sets*

1 peer-reviewed madeup problem

8

CSC/ECE 506: Architecture of Parallel Computers

Tests

Two 120-minute midterm tests (10%, 15%
of grade)

150-minute final (24% of grade)

Open book, open notes

No computers or communication devices

9

CSC/ECE 506: Architecture of Parallel Computers

Extra Credit

All activities for which extra credit is given
must help other students to learn the course
material.

Examples
Making outstanding contributions to answering other
students' questions on Piazza

Contributing useful practice problems via Peerwise

Doing extra peer reviews of madeup problems submitted to
Expertiza

Suggesting Web or print resources that will help other students
write useful madeup problems

10

CSC/ECE 506: Architecture of Parallel Computers

The Staff

Instructor

11

CSC/ECE 506: Architecture of Parallel Computers

12

CSC/ECE 506: Architecture of Parallel Computers

TAs

13

Sharan Jilla

CSC/ECE 506: Architecture of Parallel Computers
14

Outline for Lecture 1

Architectural trends

Types of parallelism

Flynn taxonomy

Scope of CSC/ECE 506

CSC/ECE 506: Architecture of Parallel Computers
15

Key Points

More and more components can be integrated on a single
chip

24 months.

Exercise: Look up how the number of transistors per chip has
changed, esp. since 2006. Submit here.

Until recently, performance tracked speed of integration

At the architectural level, two techniques facilitated this:
Cache memory
Instruction-level parallelism

Performance gain from uniprocessor system was high
enough that multiprocessor systems were not viable for most
uses.

CSC/ECE 506: Architecture of Parallel Computers
16

Illustration

100-processor system with perfect speedup

Compared to a single processor system
Year 1: 100x faster

Year 2: 62.5x faster

Year 3: 39x faster

Year 10: 0.9x faster

Single-processor performance catches up in just a few
years!

Even worse
It takes longer to develop a multiprocessor system

Low volume means prices must be very high

High prices delay adoption

Perfect speedup is unattainable

CSC/ECE 506: Architecture of Parallel Computers
17

How did uniprocessor performance grow so fast?

transistors, faster clock, etc.)

Instruction-level parallelism (ILP)
Pipelining: RISC, CISC with RISC back-end

Superscalar

Out-of-order execution

Memory hierarchy (caches)
Exploit spatial and temporal locality

Multiple cache levels

CSC/ECE 506: Architecture of Parallel Computers
18

But uniprocessor perf. growth has stalled

Source of performance growth had been ILP
Parallel execution of independent instructions from a
single thread

But ILP improvement has slowed abruptly
Memory wall: Processor speed grows at 55%/year,
memory speed grows at 7% per year
ILP wall: achieving higher ILP requires quadratically
increasing complexity (and power)

Power efficiency
Thermal packaging limit vs. cost

CSC/ECE 506: Architecture of Parallel Computers
19

Instruction level (cf. ECE 563)

Pipelining

Types of parallelism

A (a load)

B

C

IF ID MEMEX WB

IF ID MEMEX WB

IF ID MEMEX WB

CSC/ECE 506: Architecture of Parallel Computers
20

Types of parallelism, cont.

Superscalar/VLIW

Original:

Schedule as:

+ Moderate degree of parallelism

Requires fast communication (register level)

LD F0, 34(R2)

ADDD F4, F0, F2

LD F7, 45(R3)

ADDD F8, F7, F6

LD F0, 34(R2) | LD F7, 45(R3)

ADDD F4, F0, F2 | ADDD F8, F0, F6

CSC/ECE 506: Architecture of Parallel Computers
21

Why ILP is slowing

30
stages)

But critical dependence loops do not change

Memory latency requires more clock cycles to satisfy

Branch-prediction accuracy is already > 90%
Hard to improve it even more

Cache size
Effective, but also shows diminishing returns

In general, size must be doubled to reduce miss rate by half.

CSC/ECE 506: Architecture of Parallel Computers
22

Current trends: multicore and manycore

Aspect Intel
Clovertown

AMD
Barcelona

IBM Cell

cores 4 4 8+1

Clock
frequency

2.66 GHz 2.3 GHz 3.2 GHz

Core type OOO
Superscalar

OOO
Superscalar

2-issue SIMD

Caches 2x4MB L2 512KB L2
(private),

256KB local
store

Chip power 120 watts 95 watts 100 watts

Exercise: Browse the Web (or the textbook) for information on more
recent processors, and for each processor, fill out this form. (You can view
the submissions.)

CSC/ECE 506: Architecture of Parallel Computers
23

Scope of CSC/ECE 506

Parallelism
Loop-level and task-level parallelism

Flynn taxonomy
SIMD (vector architecture)

MIMD
Shared memory machines (SMP and DSM)

Clusters

Programming Model
Shared memory

Message-passing

Hybrid

Data parallel

CSC/ECE 506: Architecture of Parallel Computers
24

Loop-level parallelism

Sometimes each iteration can be performed
independently.

Sometimes iterations cannot be performed independently
no loop-level parallelism.

+ Very high parallelism > 1K
+ Often easy to achieve load balance

Some loops are not parallel
Some apps do not have many loops

for (i=0; i<8; i++)
a[i] = b[i] + c[i];

for (i=0; i<8; i++)
a[i] = b[i] + a[i-1];

CSC/ECE 506: Architecture of Parallel Computers
25

Task-level parallelism

Arbitrary code segments in a single program

Across loops:

Subroutines:

Threads: e.g., editor: GUI, printing, parsing

+ Larger granularity low overheads, communication

Low degree of parallelism

Hard to balance

for (i=0; i<n; i++)
sum = sum + a[i];

for (i=0; i<n; i++)
prod = prod * a[i];

Cost = getCost();
A = computeSum();
B = A + Cost;

CSC/ECE 506: Architecture of Parallel Computers
26

Program-level parallelism

Various independent programs execute together

gmake:
gcc c code1.c // assign to proc1

gcc c code2.c // assign to proc2

gcc c main.c // assign to proc3

gcc main.o code1.o code2.o

+ No communication

Hard to balance

Few opportunities

CSC/ECE 506: Architecture of Parallel Computers
27

Scope of CSC/ECE 506

Parallelism
Loop-level and task-level parallelism

Flynn taxonomy
SIMD (vector architecture)

MIMD
Shared-memory machines (SMP and DSM)

Clusters

Programming Model
Shared memory

Message-passing

Hybrid

Data parallel

CSC/ECE 506: Architecture of Parallel Computers

Taxonomy of parallel computers

The Flynn taxonomy

Single or multiple instruction streams.

Single or multiple data streams.

1. SISD machine
Only one instruction fetch stream

Some not-too-ancient laptops or desktops

Control
unit

Instruction

stream

Data

stream
ALU

CSC/ECE 506: Architecture of Parallel Computers
29

SIMD

Examples: Vector processors, SIMD extensions (MMX),
GPUs

A single instruction operates on multiple data items.

Control
unit

Instruction
stream

ALU 2

ALU 1

ALU

n

Data
stream

1

Data
stream

2

Data
stream

n

SISD:
for (i=0; i<8; i++)

a[i] = b[i] + c[i];

SIMD:
a = b + c; // vector addition

CSC/ECE 506: Architecture of Parallel Computers
30

MISD

Example: CMU Warp

Systolic arrays

Control
unit 2

ALU 2

ALU 1

ALU

n

Instruction
stream 1

stream 2

stream

n

Data
stream

Instruction

Instruction

Control
unit 1

Control
unit n

CSC/ECE 506: Architecture of Parallel Computers
31

Systolic arrays (contd.)

Practical realizations (e.g. iWARP) use quite general processors
Enable variety of algorithms on same hardware

But dedicated interconnect channels
Data transfer directly from register to register across channel

Specialized, and same problems as SIMD
General-purpose systems work well for same algorithms (locality etc.)

y(i) = w1 x(i) + w2 x(i + 1) + w3 x(i + 2) + w4 x(i + 3)

x8

y3 y2 y1

x7
x6

x5
x4

x3

w4

x2

x

w

x1

w3 w2 w1

xin

yin

xout

yout

xout = x

yout = yin + w xin
x = xin

Example: Systolic array for 1-D convolution

CSC/ECE 506: Architecture of Parallel Computers
32

MIMD

Independent processors connected together to
form a multiprocessor system.

Physical organization
Determines which memory hierarchy level is shared

Programming abstraction
Shared Memory:

on a chip: Chip Multiprocessor (CMP)

Interconnected by a bus: Symmetric multiprocessors (SMP)

Point-to-point interconnection: Distributed Shared Memory
(DSM)

Distributed Memory:
Clusters, Grid

CSC/ECE 506: Architecture of Parallel Computers
33

MIMD Physical Organization

P

caches

M

P
Shared-cache architecture:
- CMP (or Simultaneous Multi-Threading)
- e.g.: Pentium 4 chip, IBM Power4 chip, Sun

Niagara, Pentium D, etc.
- Implies shared-memory hardware

P

caches

M

P

caches

Network

UMA (Uniform Memory Access)
Shared Memory :
- Pentium Pro Quad, Sun Enterprise,

etc.
- What interconnection network?

- Bus
- Multistage
- Crossbar
- etc.

- Implies shared-memory hardware

CSC/ECE 506: Architecture of Parallel Computers
34

MIMD Physical Organization (2)

P

caches

M

Network

P

caches

M

NUMA (Non-Uniform Memory Access)
Shared Memory :
- SGI Origin, Altix, IBM p690,

AMD Hammer-based system
- What interconnection network?

- Crossbar
- Mesh
- Hypercube
- etc.

CSC/ECE 506: Architecture of Parallel Computers
35

Scope of CSC/ECE 506

Parallelism
Loop-level and task-level parallelism

Flynn taxonomy
MIMD

Shared memory machines (SMP and DSM)

Programming Model
Shared memory

Message-passing

Hybrid

Data parallel

CSC/ECE 506: Architecture of Parallel Computers
36

Programming models: shared memory

Shared Memory / Shared Address Space:
Each processor can see the entire memory

Programming model = thread programming in
uniprocessor systems

P P P

Shared M

CSC/ECE 506: Architecture of Parallel Computers

37

Programming models: message-passing

Distributed Memory / Message Passing / Multiple
Address Space:

A processor can directly access only its local memory.

All communication happens by explicit messages.

P

M

P

M

P

M

P

M

CSC/ECE 506: Architecture of Parallel Computers
38

Programming models: data parallel

Programming model
Operations performed in parallel on each element of
data structure
Logically single thread of control, performs sequential
or parallel steps
Conceptually, a processor associated with each data
element

Control
unit

Instruction
stream

ALU 2

ALU 1

ALU

n

Data
stream

1

Data
stream

2

Data
stream

n

CSC/ECE 506: Architecture of Parallel Computers

Data parallel (cont.)

Architectural model
Array of many simple, cheap processing elements
(PEs) each with little memory

PEs are attached to a control processor that issues
instructions
Specialized and general communication, cheap global
synchronization

Original motivation
Matches simple differential equation solvers
Centralize high cost of instruction fetch/sequencing

39

CSC/ECE 506: Architecture of Parallel Computers
40

Top 500 supercomputers

http://www.top500.org

Hardware:
5,120 (640 8-way nodes) 500 MHz NEC CPUs

8 GFLOPS per CPU (41 TFLOPS total)
30s TFLOPS sustained performance!

10 TB total memory

Now (Nov. 2021)
Fugaku, at Fujitsu RIKEN Ctr. for Computational Science, is #1

7.6 million cores

5.1 PB total memory

442.0 TFLOP/s max performance (Rmax)

537.2 TFLOP/s peak performance (Rpeak)

CSC/ECE 506: Architecture of Parallel Computers

Lists > Top500 > November 2022 > The list
See a list of the top systems

Statistics > List Statistics > Vendors
Lenovo is top vendor, more than double HPE

Statistics > List Statistics > Architecture
Clusters are overwhelmingly dominant

China comes from nowhere to lead in # of
systems

But US still leads in performance share

41

CSC/ECE 506: Architecture of Parallel Computers
42

Exercise

Go to http://www.top500.org and look at the Lists and
Statistics menus in the top menu bar.

From the Statistics dropdown,
choose either List Statistics or Development over time,

then select one of the statistics, e.g., Vendors, Processor
Architecture, and

examine what kind of systems are prevalent. Then do the same
for earlier lists, and report on the trend.

You can go all the way back to the first list from 1993.

Submit your results here.

Lecture 2 Architecture of Parallel Computers 1

Three parallel-programming models

• Shared-memory programming is like using a “bulletin board”
where you can communicate with colleagues.

• Message-passing is like communicating via e-mail or telephone
calls. There is a well defined event when a message is sent or
received.

• Data-parallel programming is a “regimented” form of
cooperation. Many processors perform an action separately on
different sets of data, then exchange information globally before
continuing en masse.

User-level communication primitives are provided to realize the
programming model

• There is a mapping between language primitives of the
programming model and these primitives

These primitives are supported directly by hardware, or via OS, or via
user software.

In the early days, the kind of programming model that could be used
was closely tied to the architecture.

Today—

• Compilers and software play important roles as bridges
• Technology trends exert a strong influence

The result is convergence in organizational structure, and relatively
simple, general-purpose communication primitives.

A shared address space

In the shared-memory model, processes can access the same
memory locations.

Communication occurs implicitly as result of loads and stores

This is convenient.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

• Wide range of granularities supported.

• Similar programming model to time-sharing on uniprocessors,
except that processes run on different processors

• Wide range of scale: few to hundreds of processors

Good throughput on multiprogrammed workloads.

This is popularly known as the shared memory model, even though
memory may be physically distributed among processors.

The shared-memory model

A process is a virtual address space plus

Portions of the address spaces of tasks are shared.

What does the private region of the virtual address space usually
contain?

Conventional memory operations can be used for communication.

Special atomic operations are used for synchronization.

P
1

P2

P
n

P
0

Load

P
2

Virtual address spaces for a
collection of processes com-
municating via shared addresses

Machine
physical address

Shared portion
of address
space

Private portion
of address space

Common physical
addresses

Store

private

P
1 private

P
0 private

P
n private

Lecture 2 Architecture of Parallel Computers 3

The interconnection structure

The interconnect in a shared-memory
multiprocessor can take several forms.

It may be a crossbar switch.

Each processor has a direct connection
to each memory and I/O controller.

Bandwidth scales with the number of
processors.

Unfortunately, cost scales with

This is sometimes called the “mainframe approach.”

At the other end of the spectrum is a shared-bus architecture.

All processors, memories, and I/O controllers are connected to the
bus.

Such a multiprocessor is called a symmetric multiprocessor (SMP).

What are some advantages and disadvantages of organizing a
multiprocessor this way? List them here.

•
•
•

A compromise between these two organizations is a multistage
interconnection network.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

The processors are on one
side, and the memories and
controllers are on the other.

Each memory reference has
to traverse the stages of the
network.

Why is this called a
compromise between the
other two strategies?

0

1

2

3

4

5

6

7

0

2

1

3

4

6

5

7

0

4

1

5

2

6

3

7

0

1

2

3

4

5

6

7

Stage 0 Stage 1 Stage 2

For small configurations, however, a shared bus is quite viable.

Message passing

In a message-passing architecture, a complete computer, including
the I/O, is used as a building block.

Communication is via explicit I/O operations, instead of loads and
stores.

• A program can directly access only its private address space (in
local memory).

• It communicates via explicit messages (send and receive).

It is like a network of workstations (clusters), but more tightly
integrated.

Easier to build than a scalable shared-memory machine.

Send-receive primitives

Lecture 2 Architecture of Parallel Computers 5

The programming model is further removed from basic hardware
operations.

Library or OS intervention is required to do communication.

• send specifies a buffer to be transmitted, and the receiving
process.

• receive specifies sending process, and a storage area to
receive into.

• A memory-to-memory copy is performed, from the address
space of one process to the address space of the other.

• There are several possible variants, including whether send
completes—

when the receive has been executed,

when the send buffer is available for reuse, or

when the message has been sent.

• Similarly, a receive can wait for a matching send to execute, or
simply fail if one has not occurred.

There are many overheads: copying, buffer management, protection.
Let’s describe each of these. Submit your descriptions here.

• Why is there an overhead to copying, compared to a share-
memory machine?

Local
process
address
space

Local
process
address
space

Address X

Address Y

Process P Process Q

send(X, Q)

receive(Y, P)

match!

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

• Describe the overhead of buffer management.

• What is the overhead for protection?

Here’s an example from the textbook of the difference between
shared address-space and message-passing programming.

A shared-memory system uses the model:

int a, b, signal;
…
void dosum(<args>) {
 while (signal == 0) {}; // wait until instructed to work
 printf(“child thread> sum is %d”, a + b);
 signal = 0; // my work is done
}

void main() {
 signal = 0;
 thread_create(&dosum); // spawn child thread
 a = 5, b = 3;
 signal = 1; // tell child to work
 while (signal == 1) {} // wait until child done
 printf(“all done, exiting\n”);
}

Message-passing uses the model:

int a, b;
…
void dosum() {
 recvMsg(mainID, &a, &b);
 printf(“child process> sum is %d”, a + b);
}

void main() {
 if (fork() == 0) // I am the child process
 dosum();
 else { // I am the parent process
 a = 5, b = 3;
 sendMsg(childID, a, b);

Lecture 2 Architecture of Parallel Computers 7

 wait(childID);
 printf(“all done, exiting\n”);
 }
}

Here’s the relevant section of documentation on the fork() function:
“Upon successful completion, fork() and fork1() return 0 to the
child process and return the process ID of the child process to the
parent process.”

Interconnection topologies

Early message-passing designs provided hardware primitives that
were very close to the message-passing model.

Each node was connected to a
fixed set of neighbors in a
regular pattern by point-to-point
links that behaved as FIFOs.

A common design was a
hypercube, which had 2 n
links per node, where n was the
number of dimensions.

The diagram shows a 3D cube.

One problem with hypercubes
was that they were difficult to
lay out on silicon.

Because of that, 2D meshes eventually supplanted hypercubes.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

a b c d

a b c d

f

g

h

f

g

h

e

e

Here is an example
of a 16-node mesh.
Note that the last
element in one row is
connected to the first
element in the next.

If the last element in
each row were
connected to the first
element in the same
row, we would have a
torus instead.

Early message-passing machines used a FIFO on each link.

• Thus, software sends were implemented as synchronous
hardware operations at each node.

What was the problem with this, for multi-hop messages?

• Synchronous ops were replaced by DMA, enabling non-
blocking operations

– A DMA device is a special-purpose controller that transfers
data between memory and an I/O device without processor
intervention.

– Messages were buffered by the message layer of the
system at the destination until a receive took place.

– When a receive took place, the data was

The diminishing role of topology.

• With store-and-forward routing, topology was important.

Lecture 2 Architecture of Parallel Computers 9

Parallel algorithms were often changed to conform to the
topology of the machine on which they would be run.

• Introduction of pipelined (“wormhole”) routing made topology
less important.

In current machines, it makes less difference how far the data travels.

This simplifies programming; cost of interprocessor communication is
essentially independent of which processor is receiving the data.

Toward architectural convergence

In 1990, there was a clear distinction between message-passing and
shared-memory machines. Today, there isn’t a distinct boundary.

• Message-passing operations are supported on most shared-
memory machines.

• A shared virtual address space can be constructed on a
message-passing machine, by sharing pages between
processors.

° When a missing page is accessed, a page fault occurs.

° The OS fetches the page from the remote node via
message-passing.

At the machine-organization level, the designs have converged too.

The block diagrams for shared-memory and message-passing
machines look essentially like this:

In shared memory, the network
interface is integrated with the
memory controller.

It initiates a transaction to access
memory at a remote node.

In message-passing, the network
interface is essentially an I/O device.

What does Solihin say about the ease of writing shared-memory and
message-passing programs on these architectures?

M M M

Network

P

$

P

$

P

$

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 10

Which model is easier to program for initially?

Why doesn’t it make much difference in the long run?

Lecture 3 Architecture of Parallel Computers 1

Speedup is defined as

 time for serial execution
time for parallel execution

or, more precisely, as

time for serial execution of best serial algorithm
 time for parallel execution of our algorithm

Give two reasons why it is better to define it the second way than the
first.

[§4.3.1]
concurrency, the speedup on those portions will be low, lowering the
average speedup of the whole program.

Exercise: Submit your answers to the questions below.

Suppose that a program is composed of a serial phase and a parallel
phase.

 The whole program runs for 1 time unit.

 The serial phase runs for time s, and the parallel phase for
time 1 s.

Then regardless of how many processors N are used, the execution
time of the program will be at least ___

and the speedup will be no more than ___. This is known as

regardless of how many processors are used, we can achieve a
speedup of no more than __.

Efficiency is defined as

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

 speedup
number of processors

 Let us normalize computation time so that

 the serial phase takes time 1, and
 the parallel phase takes time p if run on a single processor.

Then if run on a machine with N processors, the parallel phase takes
p/N.

Let be the ratio of serial time to total execution time. Thus

1

1 p/N

N
N p

 .

For large N, approaches , so efficiency approaches .

Does it help to add processors?

But this is a pessimistic way of looking at the
situation.

In 1988, Gustafson et al. noted that as computers become more
powerful, people run larger and larger programs.

Therefore, as N increases, p tends to increase too. Thus, as N
increases, does not get very close to 1, and efficiency remains
reasonable.

There may be a maximum to the amount of speedup for a given

processing power of the computer, there is no clear maximum to

efficiently parallelized.

Lecture 4 Architecture of Parallel Computers 1

Cache memories

[§5.1] A cache is a small, fast memory which is transparent to the
processor.

 The cache duplicates information that is in main memory.

 With each data block in the cache, there is associated an
identifier or tag. This allows the cache to be content
addressable.

37

26

49

7

information information
26?

Tag
Key

 Caches are smaller
and faster than main
memory.

 Secondary storage, on
the other hand, is
larger and slower.

Cache

Main memory

Secondary storage

 A cache miss is the term analogous to a page fault. It
occurs when a referenced word is not in the cache.

° Cache misses must be handled much more quickly
than page faults. Thus, they are handled in hardware.

 Caches can be organized according to four different
strategies:

° Direct
° Fully associative
° Set associative
° Sectored

© 2023 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2023 2

 A cache implements several different policies for retrieving

and storing information, one in each of the following
categories:

° Placement policy determines where a block is placed
when it is brought into the cache.

° Replacement policy determines what information is
purged when space is needed for a new entry.

° Write policy determines how soon information in the
cache is written to lower levels in the memory hierarchy.

Cache memory organization

[§5.2] Information is moved into and out of the cache in blocks.
When a block is in the cache, it occupies a cache line. Blocks are
usually larger than one byte,

 to take advantage of locality in programs, and
 because memory may be organized so that it can overlap

transfers of several bytes at a time.

The block size is the same as the line size of the cache.

A placement policy determines where a particular block can be
placed when it goes into the cache. E.g., is a block of memory
eligible to be placed in any line in the cache, or is it restricted to a
single line?

In our examples, we assume

 The cache contains 2048 bytes,
 with 16 bytes per line
 Thus it has lines.

 Main memory is made up of 256K bytes, or 16384 blocks.

 Thus an address consists of

Lecture 4 Architecture of Parallel Computers 3

We want to structure the cache to achieve a high hit ratio.

 Hit the referenced information is in the cache.
 Miss referenced information is not in cache, must be read

in from main memory.

Hit ratio
Number of hits

Total number of references

We will study caches that have three different placement policies
(direct, fully associative, set associative).

Direct

Only 1 choice of where to place a block.

block i line i mod 128

Each line has its own tag associated with it.

When the line is in use, the tag contains the high-order seven bits of
the main-memory address of the block.

 Main memory

Block 0
Block 1
Block 2

Block 127
Block 128
Block 129

Block 255
Block 256
Block 257

Block 4095
Block 4096

Block 16383

Tag

Tag

Tag

Line 1

Line 127

7 bits

Cache

Tag Index Offset

7 7 4

Main-memory address

Line 0

© 2023 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2023 4

To search for a word in the cache,

1. Determine what line to look in (easy; just select bits 10 4 of
the address).

2. Compare the leading seven bits (bits 17 11) of the address

with the tag of the line. If it matches, the block is in the
cache.

3. Select the desired bytes from the line.

 Advantages:

 Fast lookup (only one comparison needed).

 Cheap hardware (only one tag needs to be checked).

 Easy to decide where to place a block

 Disadvantage: Contention for cache lines.

Exercise: What would the size of the tag, index, and offset fields be
if

 the line size from our example were doubled, without changing
the size of the cache?

 the cache size from our example were doubled, without
changing the size of the line?

 an address were 32 bits long, but the cache size and line size
were the same as in the example?

Fully associative

Any block can be placed in any line in the cache.

This means that we have 128 choices of where to place a block.

 block i any free (or purgeable) cache location

Lecture 4 Architecture of Parallel Computers 5

 Main memory

Tag

Tag

Tag

Line 0

Line 1

Line 127

14 bits

Cache

Tag Offset

4

Main-memory address

14

Block 0
Block 1

Block

Block 16382
Block 16383

i

Each line has its own tag associated with it.

When the line is in use, the tag contains the high-order fourteen bits
of the main-memory address of the block.

To search for a word in the cache,

1. Simultaneously compare the leading 14 bits (bits 17 4) of
the address with the tag of all lines. If it matches any one,
the block is in the cache.

2. Select the desired bytes from the line.

 Advantages:

 Minimal contention for lines.

 Wide variety of replacement algorithms feasible.

Exercise: What would the size of the tag and offset fields be if

 the line size from our example were doubled, without changing
the size of the cache?

© 2023 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2023 6

 the cache size from our example were doubled, without
changing the size of the line?

 an address were 32 bits long, but the cache size and line size
were the same as in the example?

 Disadvantage:

 The most expensive of all organizations, due to the high
cost of associative-comparison hardware.

A flowchart of cache operation: The process of searching a fully
associative cache is very similar to using a directly mapped cache.
Let us consider them in detail.

Page
number

Byte within
page

Virtual address

Search TLB

TLB hit?

Select TLB victim
to be replaced

Translate virt. addr.
to physical addr.

No

Enter new
(virt., phys.)

addr. pair in TLB

Yes
Block

number
Byte within

block

Update
replacement status

of TLB entries

Search tags
of cache lines

Cache
hit?

No

Yes

Fetch block from
main memory

Select cache victim
to be replaced

Store new block
in cache

Update
replacement status

of cache entries

Fetch block
from cache

Select desired
bytes from block

Send byte(s)
to processor

Lecture 4 Architecture of Parallel Computers 7

Which steps would be different if the cache were directly mapped?

Set associative

1 < n < 128 choices of where to place a block.

A compromise between direct and fully associative strategies.

The cache is divided into s sets, where s is a power of 2.

block i any line in set i mod s

Each line has its own tag associated with it.

When the line is in use, the tag contains the high-order eight bits of
the main-memory address of the block. (The next six bits can be
derived from the set number.)

Main memory

Block 0
Block 1

Block 16383

Tag
Line 0

8 bits
Cache

Tag Offset

4

Main-memory address

Tag
Line 1

Tag
Line 2

Tag
Line 3

Tag
Line 126

Tag
Line 127

Block 4095

Block 65

Block 63
Block 64

Set 0

Set 1

Set 63

Index

8 6

© 2023 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2023 8

Exercise: What would the size of the tag, index, and offset fields be
if

 the line size from our example were doubled, without changing
the size of the cache?

 the set size from our example were doubled, without changing
the size of a line or the cache?

 the cache size from our example were doubled, without
changing the size of the line or a set?

 an address were 32 bits long, but the cache size and line size
was the same as in the example?

To search for a word in the cache,

1. Select the proper set (i mod s).

2. Simultaneously compare the leading 8 bits (bits 17 10) of
the address with the tag of all lines in the set. If it matches
any one, the block is in the cache.

 At the same time, the (first bytes of) the lines are also being
read out so they will be accessible at the end of the cycle.

3. If a match is found, gate the data from the proper block to
the cache-output buffer.

4. Select the desired bytes from the line

= ?

= ?

= ?

= ?

Desired block # Tags from set

Select

Select

Select

Select

Lines from set

Data outCache output-
data buffer

Lecture 4 Architecture of Parallel Computers 9

 All reads from the cache occur as early as possible, to
allow maximum time for the comparison to take place.

 Which line to use is decided late, after the data have
reached high-speed registers, so the processor can receive
the data fast.

Factors influencing line lengths:

 Long lines higher hit ratios.

 Long lines less memory devoted to tags.

 Long lines longer memory transactions (undesirable in a

multiprocessor).

 Long lines more write-backs (explained below).

For most machines, line sizes between 32 and 128 bytes perform
best.

If there are b lines per set, the cache is said to be b-way set
associative. How many way associative was the example above?

The logic to compare 2, 4, or 8 tags simultaneously can be made
quite fast.

But as b increases beyond that, cycle time starts to climb, and the
higher cycle time begins to offset the increased associativity.

Almost all L1 caches are less than 8-way set-associative. L2 caches
often have higher associativity.

Two-level caches

Write policy

[§5.2.3] Answer these questions, based on the text.

What are the two write policies mentioned in the text?

© 2023 Edward F. Gehringer CSC 506 Lecture Notes, Spring 2023 10

Which one is typically used when a block is to be written to main
memory, and why?

Which one can be used when a block is to be written to a lower level
of the cache, and why?

Can you explain what error correction has to do with the choice of
write policy?

Explain what a parity bit has to do with this.

Principle of inclusion

[§5.2.4] To analyze a second-level cache, we use the principle of
inclusion a large second-level cache includes everything in the first-
level cache.

We can then do the analysis by assuming the first-level cache did not
exist, and measuring the hit ratio of the second-level cache alone.

How should the line length in the second-level cache relate to the line
length in the first-level cache?

When we measure a two-level cache system, two miss ratios are of
interest:

 The local miss rate for a cache is the

misses experienced by the cache

number of incoming references

 To compute this ratio for the L2 cache, we need to know
the number of misses in

Lecture 4 Architecture of Parallel Computers 11

 The global miss rate of the cache is

L2 misses

of references made by processor

 This is the primary measure of the L2 cache.

What conditions need to be satisfied in order for inclusion to hold?

 L2 associativity must be L1 associativity, irrespective of
the number of sets.

 Otherwise, more entries in a particular set could fit into the
L1 cache than the L2 cache, which means the L2 cache

 The number of L2 sets has to be the number of L1 sets,
irrespective of L2 associativity.

 (Assume that the L2 line size is L1 line size.)

 If this were not true, multiple L1 sets would depend on a
single L2 set for backing store. So references to one L1
set could affect the backing store for another L1 set.

 All reference information from L1 is passed to L2 so that it
can update its replacement bits.

Even if all of t
inclusion if L1 is write-back. (However, we will still have statistical
inclusion L2 usually contains L1 data.)

Lecture 5 Architecture of Parallel Computers 1

[§5.2.6] Translation Lookaside Buffers

The CPU generates virtual addresses, which correspond to locations
in virtual memory.

In principle, the virtual addresses are translated to physical
addresses using a page table.

Page
table

Main
memory

0
1
2

3

1000

5000

8000

10000

Page #s

Phys.
addrs.

But this is too slow, so in practice,
a translation lookaside buffer
(TLB) is used.

It is like a special cache that is
indexed by page number.

If there is a hit on a page number,
then the address of the page in
memory (called the page-frame
address) is immediately obtained.

Therefore, the TLB and the cache must be accessed sequentially.

This adds an extra cycle in case of a hit.

(The page displacement is sometimes called the page offset. But we will call it
the displacement to avoid confusion with the block offset, which we just call
offset.)

How can we avoid wasting this time?

TLB

Cache

Main memory

physical address

Virtual address: Page number Displacement

miss

tag index offset

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

en a memory address is accessed.

line select (mux)

word select (mux)

MD

row
dec

tag
(27
bits)

31 5 4 3 2 0
tag
(27)

index
(2)

offset
(3)

set (holds 2 blocks) lines (8 bytes)

=? =?

MAR

What are the steps in cache access?

1.
2.
3.
4.
5.
6.
7.

We always need to read lines into the sense amplifiers and then
select the word (cf. the direct-mapped cache diagram in Lecture 4).

Now, if we know the index before address translation takes place, we
can perform steps while address translation is occurring.

There is a tradeoff between speed and power efficiency.

 For power efficiency, which order should should steps 1
through 4 be performed in?

 For maximum speed, which of steps 1 through 4 can be
performed in parallel?

1

2

3

4

5

6

7

Lecture 5 Architecture of Parallel Computers 3

s take a look at address translation.

In this example, what is the page size?

How much physical memory is there?

Our goal is to allow the cache to be indexed before address
translation completes.

In order to do that, we need to have the index field be entirely
contained within the page displacement.

So, if the displacement is d bits wide, the width of the index is j bits,
and the offset is k bits, we must have j + k d.

0

(Virtual) page number Displacement

63 12 11

(Physical) page-frame # Displacement

24 12 11 0

TLB

Tag Offset

24 0

Index

TLB supplies
the physical page
number portion

(Virtual) page number Displacement

63 12 11 0

(Phys.) page-frame #

24 12

TLB

Tag

Offset

24

Index

12

Data array

Word select

T
ag a

rra
y

=?

0 11

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

Cache hit time reduces from two cycles to one!

indexed in parallel with TLB
(although the tag match uses output from the TLB).

But there are some constraints...

 Suppose our cache is direct mapped. Then the index field
just contains the line number. So, (line number || block
offset) must fit inside the page displacement.

 What is the largest the cache can be?

 If we want to increase the size of the cache, what can we
do?

Options:
 For new machines, select page size such that

page size
cache size

associativity

 If page size is fixed, select associativity so that

associativity
cache size
page size

Example: MC88110

 Page size = 4KB

 I-cache, D-cache are both: 8KB, 2-way set-associative
(4KB = 8KB / 2)

Example: VAX series

 Page size = 512B

 For a 16KB cache, need assoc. = (16KB / 512B) = 32-way
set. assoc.!

The textbook gives these three alternatives for cache indexing and
tagging. Answer some questions about them.

Lecture 5 Architecture of Parallel Computers 5

of
physically indexed and tagged?

What is the organization we have
just been discussing (in the last
diagram)?

What is the main disadvantage
of virtually indexed and tagged?

Multilevel cache design

What are distinguishing features of the different cache levels of the
four-level design (from 2013) illustrated on p. 135 of the textbook?

 Distinguish-
ing feature

Size Access time Implemen
techology

L1 cache

L2 cache

L3 cache

L4 cache

Main mem.

What are some advantages of a centralized cache?

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

What are some advantages of a banked structure?

Inclusion in multilevel caches

Answer these questions about inclusion policies.

Which kind(s) of caches move a block from one level to the other?

Which kind(s) of caches propagate up an eviction from the L2 to the
L1?

Which kind(s) of caches have to inform the L2 about a write to the
L1?

In an inclusive cache, can L2 associativity be greater than L1
associativity?

Find and describe the typo in this diagram.

Lecture 5 Architecture of Parallel Computers 7

Replacement policies

LRU is a good strategy for cache replacement.

In a set-associative cache, LRU is reasonably cheap to implement.
Why?

With the LRU algorithm, the lines can be arranged in an LRU stack,
in order of recency of reference. Suppose a string of references is

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

a b c d a b e a b c d e

and there are 4 lines. Then the LRU stacks after each reference
are

a b c d a b e a b c d e
 a b c d a b e a b c d
 a b c d a b e a b c
 a b c d d d e a b
* * * * * * * *

Notice that at each step:

 The line that is referenced moves to the top of the LRU
stack.

 All lines below that line keep their same position.

 All lines above that line move down by one position.

How many bits per set are required to keep track of LRU status in
both of the implementations described in the text?

 Matrix

 Pseudo-LRU

Lecture 5 Architecture of Parallel Computers 9

CSC/ECE 506: Architecture of Parallel Computers

The Cache-Coherence
Problem

Lecture 6

(Chapter 6)

1

CSC/ECE 506: Architecture of Parallel Computers

Outline

Bus-based multiprocessors

The cache-coherence problem

Peterson s algorithm

Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Shared vs. Distributed Memory

What is the difference
SMP

NUMA

Cluster ?

CSC/ECE 506: Architecture of Parallel Computers

Small to Large Multiprocessors
Small scale (2 30 processors): shared memory

Often on-chip: shared memory (+ perhaps shared cache)
Most processors have MP support out of the box
Most of these systems are bus-based
Popular in commercial as well as HPC markets

Medium scale (64 256): shared memory and clusters
Clusters are cheaper
Often, clusters of SMPs

Large scale (> 256): few shared memory and many clusters
SGI Altix 3300: 512-processor shared memory (NUMA)
Large variety on custom/off-the-shelf components such as
interconnection networks.

Beowulf clusters: fast Ethernet
Myrinet: fiber optics
IBM SP2: custom

4

CSC/ECE 506: Architecture of Parallel Computers

Shared Memory vs. No Shared Memory

Advantages of shared-memory machines (vs. distributed
memory w/same total memory size)

Support shared-memory programming

Clusters can also support it via software shared
virtual memory, but with much coarser granularity
and higher overheads

Allow fine-grained sharing

You can t do this with messages there s too
much overhead to share small items

Single OS image

Disadvantage of shared-memory machines

Cost of providing shared-memory abstraction

5

CSC/ECE 506: Architecture of Parallel Computers

A Bus-Based Multiprocessor

P-Pr o bus (64-bit data, 36-bit addr ess, 66 MHz)

CPU

Bus interface

MIU

P-Pr o
module

P-Pr o
module

P-Pr o
module256-KB

L2 $
Interrupt
controller

PCI
bridge

PCI
bridge

Memory
controller

1-, 2-, or 4-w ay
interleaved

DRAM

PCI
I/O

cards

6

CSC/ECE 506: Architecture of Parallel Computers

Outline

Bus-based multiprocessors

The cache-coherence problem

Peterson s algorithm

Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Will This Parallel Code Work Correctly?

sum = 0;
begin parallel
for (i=1; i<=2; i++) {

lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
print sum;

Suppose a[1] = 3 and
a[2] = 7

Two issues:

Will it print sum = 10?
How can it support locking correctly?

8

CSC/ECE 506: Architecture of Parallel Computers

The Cache-Coherence Problem

sum = 0;
begin parallel
for (i=1; i<=2; i++) {

lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
print sum;

Suppose a[1] = 3 and
a[2] = 7

P1

Cache

P2

Cache

Pn

Cache

. . .

Will it print sum = 10?

9

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

Start state. All caches
empty and main memory
has Sum = 0.

P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller
Trace

P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

Bus

10

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 reads Sum from memory. P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller
Trace

P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

Bus

Sum=0 V

11

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P2 reads. Let s assume this
comes from memory too.

P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller

Bus

Sum=0 V Sum=0 V

Trace
P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

12

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 writes. This write goes
to the cache.

P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller

Bus

Sum=3 D Sum=0 V

Trace
P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

13

Sum=0 V

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P2 writes. P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller

Bus

Sum=3 D Sum=7 D

Trace
P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

14

Sum=0 V

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 reads. P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller

Bus

Sum=3 D Sum=7 D

Trace
P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

15

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem

Do P1 and P2 see the same sum?

Does it matter if we use a WT cache?

What if we do not have caches, or sum is uncacheable.
Will it work?

The code given at the start of the animation does not
exhibit the same coherence problem shown in the
animation. Explain why.

CSC/ECE 506: Architecture of Parallel Computers

Write-Through Cache Does Not Work

P1 reads. P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 7

Controller
Trace

P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

Bus

Sum=3 D Sum=7 D

17

CSC/ECE 506: Architecture of Parallel Computers

Software Lock Using a Flag

Here s simple code to implement a lock:

Will this guarantee mutual exclusion?

Let

void lock (int process, int lvar) { // process is 0 or 1
while (lvar == 1) {} ;
lvar = 1;

}

void unlock (int process, int lvar) {
lvar = 0;

}

18

CSC/ECE 506: Architecture of Parallel Computers

Outline

Bus-based multiprocessors

The cache-coherence problem

Peterson s algorithm

Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Peterson s Algorithm

20

Acquisition of lock() occurs only if
1.interested[other] == FALSE: either the other process

has not competed for the lock, or it has just called unlock(),
or

2.turn != other: the other process is competing, has set the
turn to our process, and will be blocked in the while() loop

int turn;
int interested[n]; // initialized to false

void lock (int process, int lvar) { // process is 0 or 1
int other = 1 process;
interested[process] = TRUE;
turn = other;
while (turn == other && interested[other] == TRUE) {} ;

}
// Post: turn != other or interested[other] == FALSE

void unlock (int process, int lvar) {
interested[process] = FALSE;

}

CSC/ECE 506: Architecture of Parallel Computers

No Race

21

// Proc 0
interested[0] = TRUE;
turn = 1;
while (turn==1 && interested[1]==TRUE)
{};

// since interested[1] starts out FALSE,
// Proc 0 enters critical section

// Proc 1
interested[1] = TRUE;
turn = 0;
while (turn==0 && interested[0]==TRUE)
{};

// since turn==0 && interested[0]==TRUE
// Proc 1 waits in the loop until Proc 0
// releases the lock// unlock

interested[0] = FALSE;

// now Proc 1 can exit the loop and
// acquire the lock

CSC/ECE 506: Architecture of Parallel Computers

Race

22

while (turn==1 && interested[1]==TRUE)
{};

// since turn == 0,
// Proc 0 enters critical section

while (turn==0 && interested[0]==TRUE)
{};

// since turn==0 && interested[0]==TRUE
// Proc 1 waits in the loop until Proc 0
// releases the lock

// unlock
interested[0] = FALSE;

// now Proc 1 can exit the loop and
// acquire the lock

// Proc 0
interested[0] = TRUE;
turn = 1;

// Proc 1
interested[1] = TRUE;

turn = 0;

CSC/ECE 506: Architecture of Parallel Computers

When Does Peterson s Alg. Work?

23

Correctness depends on the global order of

Thus, it will not work if
The compiler reorders the operations

There s no data dependence, so unless the compiler is
notified, it may well reorder the operations
This prevents compiler from using aggressive optimizations
used in serial programs

The architecture reorders the operations
Write buffers, memory controller
Network delay for statement A
If turn and interested[] are cacheable, A may result in
cache miss, but B in cache hit

This is called the memory-consistency problem.

A: interested[process] = TRUE;
B: turn = other;

CSC/ECE 506: Architecture of Parallel Computers

Race on a Non-Sequentially Consistent Machine

24

// Proc 0
interested[0] = TRUE;

turn = 1;
while (turn==1 && interested[1]==TRUE)
{};

// Proc 1

interested[1] = TRUE;
turn = 0;

while (turn==0 && interested[0]==TRUE)
{};

CSC/ECE 506: Architecture of Parallel Computers

Race on a Non-Sequentially Consistent Machine

25

// Proc 0
interested[0] = TRUE;

turn = 1;
while (turn==1 && interested[1]==TRUE)
{};

// since interested[1] == FALSE,
// Proc 0 enters critical section

// Proc 1

turn = 0;

interested[1] = TRUE;
while (turn==0 && interested[0]==TRUE)
{};

// since turn==1,
// Proc 1 enters critical section

reordered

Can you explain what has gone wrong here?

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

26

Cache coherence Memory consistency

Deals with the ordering of
operations to a single memory
location.

Deals with the ordering of
operations to different memory
locations.

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

27

Cache coherence Memory consistency

Deals with the ordering of
operations to a single memory
location.

Deals with the ordering of
operations to different memory
locations.

Tackled by hardware
using coherence protocols.
Hw. alone guarantees correctness
but with varying performance

Tackled by consistency models
supported by hardware, but
software must conform to the
model.

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

28

Cache coherence Memory consistency

Deals with the ordering of
operations to a single memory
location.

Deals with the ordering of
operations to different memory
locations.

Tackled by hardware
using coherence protocols.
Hw. alone guarantees correctness
but with varying performance

Tackled by consistency models
supported by hardware, but
software must conform to the
model.

All protocols realize same abstraction
A program written for 1 protocol
can run w/o change on any other.

Models provide diff. abstractions
Compilers must be aware of the
model (no reordering certain

using shared variables.

CSC/ECE 506: Architecture of Parallel Computers

Two Approaches to Consistency

Sequential consistency
Multi-threaded codes for uniprocessors automatically run
correctly

How? Every shared R/W completes globally in program
order

Most intuitive but worst performance

Relaxed consistency models
Multi-threaded codes for uniprocessor need to be ported to
run correctly

Additional instruction (memory fence) to ensure global
order between 2 operations

29

CSC/ECE 506: Architecture of Parallel Computers

Cache Coherence

Do we need caches?
Yes, to reduce average data access time.

Yes, to reduce bandwidth needed for bus/interconnect.

Sufficient conditions for coherence:
Notation: Requestproc(data)

Write propagation:

Rdi (X) must return the latest Wrj (X)

Write serialization:

Wri (X) and Wrj (X) are seen in the same order by everybody

t see w2 before w1
There must be a global ordering of memory

operations to a single location

Is there a need for read serialization?

30

CSC/ECE 506: Architecture of Parallel Computers

A Coherent Memory System: Intuition

Uniprocessors
Coherence between I/O devices and processors
Infrequent, so software solutions work

uncacheable memory, uncacheable operations, flush
pages, pass I/O data through caches

But coherence problem much more critical in multiprocessors
Pervasive
Performance-critical
Necessitates a hardware solution

* Note that latest write is ambiguous.
Ultimately, what we care about is that any write is propagated
everywhere in the same order.

Synchronization defines what latest means.

31

CSC/ECE 506: Architecture of Parallel Computers

Summary

Shared memory with caches raises the problem of cache
coherence.

Writes to the same location must be seen in the same
order everywhere.

But this is not the only problem

Writes to different locations must also be kept in order
if they are being depended upon for synchronizing
tasks.

This is called the memory-consistency problem

32

CSC/ECE 506: Architecture of Parallel Computers

Coherence and Consistency

1

Lecture 7

(Chapter 7)

CSC/ECE 506: Architecture of Parallel Computers

Outline

Bus-based coherence

Invalidation vs. update coherence
protocols

Memory consistency

Sequential consistency

CSC/ECE 506: Architecture of Parallel Computers

Several Configurations for a Memory System

3

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shar ed memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory

CSC/ECE 506: Architecture of Parallel Computers

Assume a Bus-Based SMP

• Built on top of two fundamentals of uniprocessor system

– Bus transactions

– Cache-line finite-state machine

• Uniprocessor bus transaction:

– Three phases: arbitration, command/address, data transfer

– All devices observe addresses, one is responsible

• Uniprocessor cache states:

– Every cache line has a finite-state machine

– In WT+write no-allocate: Valid, Invalid states

– WB: Valid, Invalid, Modified (“Dirty”)

• Multiprocessors extend both these somewhat to implement
coherence

4

CSC/ECE 506: Architecture of Parallel Computers

Snoop-Based Coherence on a Bus

• Basic Idea

– Assign a snooper to each processor so that all bus transactions
are visible to all processors (“snooping”).

– Processors (via cache controllers) change line states on relevant
events.

5

CSC/ECE 506: Architecture of Parallel Computers

Snoop-Based Coherence on a Bus

• Basic Idea

– Assign a snooper to each processor so that all bus transactions
are visible to all processors (“snooping”).

– Processors (via cache controllers) change line states on relevant
events.

• Implementing a Protocol

– Each cache controller reacts to processor and bus events:
• Takes actions when necessary

– Updates state, responds with data, generates new bus
transactions

– The memory controller also snoops bus transactions and
returns data only when needed

– Granularity of coherence is typically cache line/block

• Same granularity as in transfer to/from cache

6

CSC/ECE 506: Architecture of Parallel Computers

Coherence with Write-Through Caches

7

sum = 0;
begin parallel
for (i=0; i<2; i++) {

lock(id, myLock);
sum = sum + a[i];
unlock(id, myLock);

end parallel
Print sum;

Suppose a[0] = 3 and a[1] = 7

P1

Cache

P2

Cache

Pn

Cache

. . .

= Snooper

– What happens when we snoop a write?
• Write-update protocol: write is immediately propagated or
• Write-invalidation protocol: causes miss on later access, and memory up-

to-date via write-through

CSC/ECE 506: Architecture of Parallel Computers

Snooper Assumptions

• Atomic bus

• Writes occur in
program order

8

CSC/ECE 506: Architecture of Parallel Computers

Transactions

• To show what’s going on, we will use
diagrams involving—
– Processor transactions

• PrRd

• PrWr

– Snooped bus transactions
• BusRd

• BusWr

9

CSC/ECE 506: Architecture of Parallel Computers

Write-Through State-Transition Diagram

10

V

I

PrRd/BusRd

PrRd/-- PrWr/BusWr

PrWr/BusWr

BusWr/--

Processor-initiated transactions

Bus-snooper-initiated transactions

• Key: A write invalidates all other caches

• Therefore, we have:

– Modified line: exists as V in only 1 cache

– Clean line: exists as V in at least 1 cache

– Invalid state represents invalidated line or not present in the cache

write-through
no-write-allocate
write invalidate

How does this protocol
guarantee write
propagation?

How does it guarantee
write serialization?

CSC/ECE 506: Architecture of Parallel Computers

Is It Coherent?
• Write propagation:

– through invalidation

– then a cache miss, loading a new value

• Write serialization: Assume—

– atomic bus

– invalidation happens instantaneously

– writes serialized by order in which they appear on bus (bus order)
• So are invalidations

• Do reads see the latest writes?

– Read misses generate bus transactions, so will get the last write

– Read hits: do not appear on bus, but are preceded by

• most recent write by this processor (self), or

• most recent read miss by this processor

– Thus, reads hits see latest written values (according to bus order)
11

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

12

A memory operation M2 follows a memory operation M1 if the operations are issued
by the same processor and M2 follows M1 in program order.
1. Read follows write W if read generates bus transaction that follows W’s xaction.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

1

1

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

13

A memory operation M2 follows a memory operation M1 if the operations are issued
by the same processor and M2 follows M1 in program order.
1. Read follows write W if read generates bus transaction that follows W’s xaction.
2. Write follows read or write M if M generates bus transaction and the transaction

for the write follows that for M.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

2

2
R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

14

A memory operation M2 follows a memory operation M1 if the operations are issued
by the same processor and M2 follows M1 in program order.
1. Read follows write W if read generates bus transaction that follows W’s xaction.
2. Write follows read or write M if M generates bus transaction and the transaction

for the write follows that for M.
3. Write follows read if read does not generate a bus transaction and is not already

separated from the write by another bus transaction.

• Writes establish a partial order
• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

3

3
R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

CSC/ECE 506: Architecture of Parallel Computers

Problem with Write-Through
• Write-through can guarantee coherence, but needs a lot of bandwidth.

– Every write goes to the shared bus and memory

– Example:

200MHz, 1-CPI processor, and 15% instrs. are 8-byte stores
Each processor generates 30M stores, or 240MB data, per second
How many processors could a 1GB/s bus support without saturating?

– Thus, unpopular for SMPs

• Write-back caches
– Write hits do not go to the bus reduce most write bus transactions
– But now how do we ensure write propagation and serialization?

15

CSC/ECE 506: Architecture of Parallel Computers

Lecture 7 Outline

16

Bus-based coherence
Invalidation vs. update coherence protocols
Memory consistency

Sequential consistency

CSC/ECE 506: Architecture of Parallel Computers

Dealing with “Dirty” Lines

• What does it mean to say a cache line is “dirty”?
– That at least one of its words has been changed since it was

brought in from main memory.

• Dirty in a uniprocessor vs. a multiprocessor
– Uniprocessor:

• Only need to keep track of
whether a line has been modified.

• Multiprocessor:
• Keep track of whether line is modified.

• Keep track of which cache owns the line.

• Thus, a cache line must know whether it is—

• Exclusive: “I’m the only one that has it, other than possibly
main memory.”

• The Owner: “I’m responsible for supplying the block upon a
request for it.” 17

CSC/ECE 506: Architecture of Parallel Computers

Invalidation vs. Update Protocols

• Question: What happens to a line if another
processor changes one of its words?

– It can be invalidated.

– It can be updated.

CSC/ECE 506: Architecture of Parallel Computers

Invalidation-Based Protocols

• Idea: When I write the block, invalidate everybody else
I get exclusive state.

• “Exclusive” means …
• Can modify without notifying anyone else (i.e., without a bus

transaction)

• But, before writing to it,
• Must first get block in exclusive state

• Even if block is already in state V, a bus transaction
(Read Exclusive = RdX) is needed to invalidate others.

• What happens when a block is ejected from the cache?
– if the block is not dirty?

– if the block is dirty?

19

CSC/ECE 506: Architecture of Parallel Computers

-Based Protocols

• Idea: If this block is written, send the new word to all
other caches.
• New bus transaction: Update

• Compared to invalidate, what are advs. and disads.?

• Advantages
• Other processors don’t miss on next access

• Saves refetch: In invalidation protocols, they would miss & bus
transaction.

• Saves bandwidth: A single bus transaction updates several
caches

• Disadvantages
• Multiple writes by same processor cause multiple update

transactions
• In invalidation, first write gets exclusive ownership, other writes local

20

CSC/ECE 506: Architecture of Parallel Computers

Invalidate versus Update

• Is a block written by one processor read by other
processors before it is rewritten?

• Invalidation:
• Yes Readers will take a miss.

• No Multiple writes can occur without additional traffic.
• Copies that won’t be used again get cleared out.

• Update:
• Yes Readers will not miss if they had a copy previously

• A single bus transaction will update all copies

• No Multiple useless updates, even to dead copies

• Invalidation protocols are much more popular.
• Some systems provide both, or even hybrid

21

CSC/ECE 506: Architecture of Parallel Computers

Lecture 7 Outline

Bus-based coherence
Invalidation vs. update coherence
protocols
Memory consistency

Sequential consistency

22

CSC/ECE 506: Architecture of Parallel Computers

Let’s Switch Gears to Memory Consistency

23

• Sequential consistency (SC) corresponds to our intuition.

• Other memory consistency models do not obey our intuition!

• Coherence doesn’t help; it pertains only to a single location

P1 P2

/*Assume initial values of A and flag are 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

• Recall Peterson’s algorithm (turn= …; interested[process]=…)

• When “multiple” means “all”, we have sequential consistency (SC)

Consistency: Writes to multiple locations are visible to all in the same order

Coherence: Writes to a single location are visible to all in the same order

CSC/ECE 506: Architecture of Parallel Computers

Another Example of Ordering

24

• What do you think the results should be? You may think:

• 1a, 1b, 2a, 2b
• 1a, 2a, 2b, 1b
• 2a, 2b, 1a, 1b

P1 P2

/*Assume initial values of A and B are 0 */

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

programmers’ intuition:
sequential consistency

{A=1, B=2}
{A=1, B=0}
{A=0, B=0}

• Whatever our intuition is, we need

• an ordering model for clear semantics across different locations
• as well as cache coherence!

so programmers can reason about what results are possible.

• Is {A=0, B=2} possible? • Yes, suppose P2 sees: 1b, 2a, 2b, 1a
e.g. evil compiler, evil interconnection.

CSC/ECE 506: Architecture of Parallel Computers

A Memory-Consistency Model …

• Is a contract between programmer and system
• Necessary to reason about correctness of

shared-memory programs

• Specifies constraints on the order in which
memory operations (from any process) can
appear to execute with respect to one another
• Given a load, constrains the possible values returned by it

• Implications for programmers
• Restricts algorithms that can be used
• e.g., Peterson’s algorithm, home-brew synchronization will be

incorrect in machines that do not guarantee SC

• Implications for compiler writers and computer architects
• Determines how much accesses can be reordered.

25

CSC/ECE 506: Architecture of Parallel Computers

Lecture 7 Outline

26

Bus-based coherence
Memory consistency

Sequential consistency
Invalidation vs. update coherence protocols

CSC/ECE 506: Architecture of Parallel Computers

Sequential Consistency

27

“A multiprocessor is sequentially consistent if the result of any execution is
the same as if the operations of all the processors were executed in some
sequential order, and the operations of each individual processor appear in
this sequence in the order specified by its program.” [Lamport, 1979]

• (as if there were no caches, and a single memory)

• Total order achieved by interleaving accesses from different processes

• Maintains program order, and memory operations, from all processes,
appear to [issue, execute, complete] atomically w.r.t. others

Processors
issuing memory
references as
per program or der

P1 P2 Pn

Memory

The “switch” is randomly
set after each memory
reference

CSC/ECE 506: Architecture of Parallel Computers

What Really Is Program Order?

• Intuitively, the order in
which operations appear
in source code

• Thus, we assume order
as seen by programmer,
• the compiler is prohibited from reordering memory

accesses to shared variables.

• Note that this is one reason parallel programs
are less efficient than serial programs.

28

CSC/ECE 506: Architecture of Parallel Computers

What Reordering Is Safe in SC?

29

• Possible outcomes for (A,B): (0,0), (1,0), (1,2); impossible under SC: (0,2)

• Proof: By program order we know 1a 1b and 2a 2b
A = 0 implies 2b 1a, which implies 2a 1b

B = 2 implies 1b 2a, which leads to a contradiction

• BUT, actual execution 1b 1a 2b 2a is SC, despite not being in program order

– It produces the same result as 1a 1b 2a 2b.

– Actual execution 1b 2a 2b 1a is not SC, as shown above

– Thus, some reordering is possible, but difficult to reason that it ensures SC

What matters is the order in which code appears to execute,
not the order in which it actually executes.

P1 P2

/*Assume initial values of A and B are 0 */

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

CSC/ECE 506: Architecture of Parallel Computers

Conditions for SC
• Two kinds of requirements

– Program order
• Memory operations issued by a process must appear to become

visible (to others and itself) in program order.
– Global order

• Atomicity: One memory operation should appear to complete
with respect to all processes before the next one is issued.

• Global order: The same order of operations is seen by all
processes.

• Tricky part: how to make writes atomic?
– Necessary to detect write completion
– Read completion is easy: a read completes when the data returns

• Who should enforce SC?
– Compiler should not change program order
– Hardware should ensure program order and atomicity

30

CSC/ECE 506: Architecture of Parallel Computers

Write Atomicity

31

• Write Atomicity ensures same write ordering is seen by all procs.

– In effect, extends write serialization to writes from multiple
processes

• Under SC, transitivity implies that A should print as 1.
Without SC, why might it not?

P1 P2 P3

A=1; while (A==0);

B=1; while (B==0);

print A;

CSC/ECE 506: Architecture of Parallel Computers

Is the Write-Through Example SC?

o Assume no write buffers, or load-store bypassing

o Yes, it is SC, because of the atomic bus:
• Any write and read misses (to all locations) are serialized

by the bus into bus order.

• If a read obtains value of write W, W is guaranteed to have
completed since it caused a bus transaction

• When write W is performed with respect to any processor,
all previous writes in bus order have completed

32

CSC/ECE 506: Architecture of Parallel Computers

Summary

• One solution for small-scale multiprocessors is a shared
bus.

• State-transition diagrams can be used to show how a
cache-coherence protocol operates.
– The simplest protocol is write-through, but it has performance problems.

• Sequential consistency guarantees that memory
operations are seen in order throughout the system.
– It is fairly easy to show whether a result is or is not sequentially

consistent.

• The two main types of coherence protocols are
invalidate and update.
– Invalidate usually works better, because it frees up cache lines

more quickly.

Lecture 8 Architecture of Parallel Computers 1

Shared-Memory Parallel
Programming

[§3.1] Solihin identifies several
steps in parallel programming.

The first step is identifying parallel
tasks. Can you give an example?

The next step is identifying
variable scopes. What does this
mean?

The next step is grouping tasks
into threads. What factors need
to be taken into account to do
this?

Then threads must be
synchronized. How did we see this done in the three parallel-
programming models?

What considerations are important in mapping threads to processors?

Solihin says that there are three levels of parallelism:

 program level
 algorithm level
 code level

Identifying loop-level parallelism

[§3.2] Goal: given a code, without knowledge of the algorithm, find
parallel tasks.

Focus on loop-dependence analysis.

Notations:

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

 S is a statement in the source code

 S[i, j, i, j,

 S1 then S2 means that S1 happens before S2

 If S1 then S2:

S1 T S2 denotes true dependence, i.e., S1 writes to a
location that is read by S2

S1 A S2 denotes anti-dependence, i.e., S1 reads a
location written by S2

S1 O S2 denotes output dependence, i.e., S1 writes to the
same location written by S2

Example:

S1: x = 2;
S2: y = x;
S3: y = x + 4;
S4: x = y;

Exercise: Identify the dependences in the above code.

Loop-independent vs. loop-carried dependences

[§3.2] Loop-carried dependence: dependence exists across
iterations; i.e., if the loop is removed, the dependence no longer
exists.

Loop-independent dependence: dependence exists within an
iteration; i.e., if the loop is removed, the dependence still exists.

Example:

Lecture 8 Architecture of Parallel Computers 3

S1[i] T S1[i+1]: loop-carried

S1[i] T S2[i]: loop-
independent

S3[i,j] T S3[i,j+1]:

 loop-carried on for j
loop

 no loop-carried
dependence in for i
loop

S4[i,j] T S4[i+1,j]:

 no loop-carried dependence in for j loop

 loop-carried on for i loop

Iteration-space Traversal Graph (ITG)

[§3.2.1] The ITG shows graphically the order of traversal in the
iteration space. This is sometimes called the happens-before
relationship. In an ITG,

 A node represents a point in the iteration space

 A directed edge indicates the next point that will be
encountered after the current point is traversed

Example:

for (i=1; i<n; i++) {
 S1: a[i] = a[i-1] + 1;
 S2: b[i] = a[i];
}

for (i=1; i<n; i++)
 for (j=1; j< n; j++)
 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<n; i++)
 for (j=1; j< n; j++)
 S4: a[i][j] = a[i-1][j] + 1;

for (i=1; i<4; i++)
 for (j=1; j<4; j++)
 S3: a[i][j] = a[i][j-1] + 1;

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

Loop-carried Dependence Graph (LDG)

 LDG shows the true/anti/output dependence relationship
graphically.

 A node is a point in the iteration space.

 A directed edge represents the dependence.

Example:

i

j

1

2

3

3 2 1

for (i=1; i<4; i++)
 for (j=1; j<4; j++)
 S3: a[i][j] = a[i][j-1] + 1;

Lecture 8 Architecture of Parallel Computers 5

Another example:

 Draw the ITG

 List all the dependence relationships

Note that there are t

 The first involves S1.
 The other involves S2 and S3.

What do we know about the ITG for these nested loops?

1

2

3

3 2 1

i

j

T

T

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {
 S2: a[i][j] = b[i][j] + c[i][j];
 S3: b[i][j] = a[i][j-1] * d[i][j];
 }

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

Dependence relationships for Loop Nest 1

 True dependences:

o S1[i,j] T S1[i,j+1]
o S1[i,j] T S1[i+1,j]

 Output dependences:

o None

 Anti-dependences:

o S1[i,j] A S1[i+1,j]
o S1[i,j] A S1[i,j+1]

Exercise: Suppose we dropped off the first half of S1, so we had

S1: a[i][j] = a[i-1][j] + a[i+1][j];

or the last half, so we had

S1: a[i][j] = a[i][j-1] + a[i][j+1];

Which of the dependences would still exist?

i

1

2

n

n 2 1 . . .

. . .

Lecture 8 Architecture of Parallel Computers 7

Draw the LDG for Loop Nest 1.

Dependence relationships for Loop Nest 2

 True dependences:

o S2[i,j] T S3[i,j+1]

 Output dependences:

o None

 Anti-dependences:

o S2[i,j] A S3[i,j] (loop-independent dependence)

i

j

1

2

n

n 2 1 . . .

. . .

Note: each
edge represents
both true and
anti-dependences

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

Draw the LDG for Loop Nest 2.

Why are there no vertical edges in this graph? Answer here.

Why is the anti-dependence not shown on the graph?

Exercise: Consider this code sequence.

for (i = 3; i < n; i++) {
for (j = 0; j < n - 3; j++) {

S1: A[i][j] = A[i - 3][j] + A[i][j + 3];
S2: B[i][j] = A[i][j] / 2;

}
}

List the dependences, and say whether they are loop independent or
loop carried. Then draw the ITG and LDG (you don t need to submit
these).

i

j

1

2

n

n 2 1 . . .

. . .

Note: each
edge represents
only true dependences

Lecture 9 Architecture of Parallel Computers 1

Finding parallel tasks across iterations

[§3.3.1] Analyze loop-carried dependences:

Dependences must be enforced (especially true dependences;
other dependences can be removed by privatization)

There are opportunities for parallelism when some dependences
are not present.

Example 1

LDG:

We can divide the loop into two parallel
tasks (one with odd iterations and
another with even iterations):

for (i=2; i<=n; i++)
 S: a[i] = a[i-2];

for (i=2; i<=n; i+=2)
 S: a[i] = a[i-2];
for (i=3; i<=n; i+=2)
 S: a[i] = a[i-2];

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

Example 2

LDG

How many parallel tasks are there here?

Example 3

LDG

Identify which
nodes are not
dependent on each other

i

j

1

2

n

n21 . . .

. . .

for (i=0; i<n; i++)
for (j=0; j< n; j++)

 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++)
 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

j

1

2

n

n21 . .
.

Note: each
edge represents
both true, and
anti-dependences

Lecture 9 Architecture of Parallel Computers 3

In each anti-diagonal, the nodes are independent of each other

We need to rewrite the code to iterate over anti-diagonals:

Calculate number of anti-diagonals
for each anti-diagonal do

Calculate the number of points in the current anti-diagonal
 for_all points in the current anti-diagonal do
 Compute the value of the current point in the matrix

Parallelize the loops highlighted above.

i

1

2

n

n21 ...

...

Note: each
edge represents
both true, and
anti-dependences

2 n

for (i=1; i <= 2*n-1; i++) {// 2n-1 anti-diagonals
 if (i <= n) {
 points = i; // number of points in anti-diag
 row = i; // first pt (row,col) in anti-diag
 col = 1; // note that row+col = i+1 always
 }
 else {
 points = 2*n i;
 row = n;
 col = i-n+1; // note that row+col = i+1 always
 }
for_all (k=1; k <= points; k++) {

 row--; col++;
 }
}

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

DOACROSS Parallelism

[§3.3.2] Suppose we have this code:

Can we execute anything
in parallel?

for

S[i] T S[i+1] (There is a loop-carried dependence.)

But, notice that the b[i]*c[i] part has no loop-carried dependence.

This suggests breaking up the loop into two:

The first loop is ||izable.
The second is not.

Execution time: N (TS1+TS2)

What is a disadvantage of
this approach?

this problem:

What is the execution time now? TS1 +
N TS2

for (i=1; i<=N; i++) {
 S1: temp[i] = b[i] * c[i];
}
for (i=1; i<=N; i++) {
 S2: a[i] = a[i-1] + temp[i];
}

post(0);
for (i=1; i<=N; i++) {
 S1: temp = b[i] * c[i];
 wait(i-1);
 S2: a[i] = a[i-1] + temp;
 post(i);
}

for (i=1; i<=N; i++) {
 S: a[i] = a[i-1] + b[i] * c[i];
}

Lecture 9 Architecture of Parallel Computers 5

Function parallelism

 [§3.3.3] Identify dependences in a loop body.

 If there are independent statements, can split/distribute the loops.

Example:

Loop-carried dependences:

Loop-indep. dependences:

Note that S4 has no dependences with other statements

After loop distribution:

Each loop is a parallel task.

This is called function
parallelism.

It can be distinguished from
data parallelism, which we
saw in DOALL and
DOACROSS.

Further transformations can be performed (see p. 64 of text).

 S1[i] A S2[i+1] ion i+1 must be
executed after S1 at iteration i. Hence, the dependence is not violated
if all S2s execute after all S1s.

Characteristics of function parallelism:

Can use function parallelism along with data parallelism when data
parallelism is limited.

for (i=0; i<n; i++) {
 S1: a[i] = b[i+1] * a[i-1];
 S2: b[i] = b[i] * coef;
 S3: c[i] = 0.5 * (c[i] + a[i]);
 S4: d[i] = d[i-1] * d[i];
}

for (i=0; i<n; i++) {
 S1: a[i] = b[i+1] * a[i-1];
 S2: b[i] = b[i] * coef;
 S3: c[i] = 0.5 * (c[i] + a[i]);
}

for (i=0; i<n; i++) {
 S4: d[i] = d[i-1] * d[i];
}

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

DOPIPE Parallelism

[§3.3.4] Another strategy for loop-carried dependences is pipelining the
statements in the loop.

Consider this situation:

Loop-carried dependences:

Loop-indep. dependences:

To parallelize, we just need to make sure the two statements are
executed in sync:

Question:
between DOACROSS and
DOPIPE?

Determining variable scope

[§3.6] This step is specific to the shared-memory programming model.
For each variable, we need to decide how it is used. There are three
possibilities:

 Read-only: variable is only read by multiple tasks

 R/W non-conflicting: variable is read, written, or both by only one
task

 R/W conflicting: variable is written by one task and may be read
by another

for (i=2; i<=N; i++) {
 S1: a[i] = a[i-1] + b[i];
 S2: c[i] = c[i] + a[i];
}

for (i=2; i<=N; i++) {
 a[i] = a[i-1] + b[i];
 post(i);
}

for (i=2; i<=N; i++) {
 wait(i);
 c[i] = c[i] + a[i];
}

Lecture 9 Architecture of Parallel Computers 7

Intuitively, why are these cases different?

Example 1

each iteration
of the for i
loop is a
parallel task.

Fill in the tableaus here.

Read-only R/W non-conflicting R/W conflicting

for j iteration is a separate task.

Read-only R/W non-conflicting R/W conflicting

Do these two decompositions create the same number of tasks?

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {
 S2: a[i][j] = b[i][j] + c[i][j];
 S3: b[i][j] = a[i][j-1] * d[i][j];
 }

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

Example 2

each for j iteration is
a separate task.

Read-only R/W non-conflicting R/W conflicting

Exercise: Suppose each for i iteration were a separate task

Read-only R/W non-conflicting R/W conflicting

for (i=1; i<=n; i++)
 for (j=1; j<=n; j++) {
 S1: a[i][j] = b[i][j] + c[i][j];
 S2: b[i][j] = a[i-1][j] * d[i][j];
 S3: e[i][j] = a[i][j];
 }

