
Lecture 19 Architecture of Parallel Computers 1

Cache Coherence vs. Memory Consistency

Cache coherence
o deals with ordering of writes to a single memory location
o only needed for systems with caches

Memory consistency
o deals with ordering of reads/writes to all memory locations
o needed in systems with or without caches

Why is a memory consistency model needed?

[§9.1] Programmer’s intuition:

P0:
S1: datum = 5;
S2: datumIsReady = 1;

P1:
S3: while (!datumIsReady);
S4: … = datum

Programmers expect S4 to read the new value of datum (i.e., 5).

This expectation is violated if—

S2 appears to be executed before S1
S4 appears to be executed before S3

Thus, Hypothesis 1: Program-order expectation
Programmers expect memory accesses in a thread to be executed in
the same order in which they occur in the source code.

Not only the executing thread, but all threads, are expected to see
them in this order.

P0:
S1: x = 5;
S2: xReady = 1;

P1:
S3: while

(!xReady) {};
S4: y = x + 4;
S5: xyReady = 1;

P2:
S6: while

(!xyReady) {};
S7: z = x * y;

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

Let’s say, initially, x = y = z = xReady = xyReady = 0
As a programmer, what would you expect to be the value of z at S7?

This implies that if the new value of x has been propagated to P2, it
has also been propagated to

Thus, Hypothesis 2: Atomicity expectation
A read or write happens instantaneously with respect to all processors.

How can the atomicity expectation be violated?

Step 1: New values of x and xReady have been propagated to
P1, but have not reached P2.

Step 2: New values of y and xyReady have been propagated to
P2 before x is propagated to P2.

Step 3: When x is propagated to P2, P2 has already read the old
value of x, and z has been set to 0.

Is there any other way that a violation of store atomicity can lead to
a wrong value for z?

What is another “incorrect” value that could be written for z?
Explain how this could happen.

Summary of programmer’s expectations:

Lecture 19 Architecture of Parallel Computers 3

Memory accesses emanating from a processor should be performed
in program order, and each of them should be performed atomically.

These expectations were incorporated in Lamport’s 1979 definition of
sequential consistency:

A multiprocessor is sequentially consistent if the result of any
execution is the same as if the operations of all the processors
were executed in some sequential order, and the operations of
each individual processor occur in this sequence in the order
specified by its program.

Sequentially consistent vs. non-SC outcomes
Consider these code sequences, with a and b initialized to 0.

P0:
S1: a = 1;
S2: b = 1;

P1:
S3: print b;
S4: print a;

Note that this program is non-deterministic due to a lack of
synchronization.

Under SC, S1 S2 and S3 S4 are guaranteed

Assuming SC, what values might possibly be printed for a and b?

What values for a, b are impossible?

Prove it.

For a to print as , it must be that S4 S1: e.g.,

For b to print as , it must be that S2 S3: e.g.,

Both of these conditions cannot hold. Prove it.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

On a non-SC machine, the outcome of a, b = , is possible.
What statement ordering can produce it?

In this case, which of the two SC precedence guarantees (above) is
violated?

Let’s take another example.

P0:
S1: a = 1;
S2: print b;

P1:
S3: b = 1;
S4: print a;

Exercise: Assuming that a and b are initialized to 0,

what values can be printed under SC?
what values are impossible to print under SC?
prove that the impossible results can only occur if SC is violated.

Answer: Note that the program is non-deterministic due to a lack of
synchronization.

With SC, S1 S2 and S3 S4 are guaranteed

On a nondeterministic machine, the outcome a, b is
possible.

Lecture 19 Architecture of Parallel Computers 5

 S4, S1, S2, S3

o In this case, S3 S4 is violated

 S2, S3, S4, S1

o In this case, S1 S2 is violated

Both of the previous examples are non-deterministic.

Non-deterministic codes are notoriously hard to debug.

But non-determinism may have legitimate uses. See Code 3.16
(ocean-current simulation) and 3.18 (smoothing filter for grayscale
image).

So, does preserving ordering of memory accesses matter?

 Probably not if non-determinism is intentional

 Otherwise, yes, because:

o Helps keep programmers sane during debugging.
o Even properly synchronized programs need ordering for

the synchronization to work properly.

Building a SC system

[§9.2] Which of the two hypotheses (expectations) can be
guaranteed by software?

 Ensure that compiler does not reorder memory accesses;
 Declare critical variables as volatile (to avoid register allocation,

code elimination, etc.)

What hypothesis needs to be maintained by hardware?

 Execute one memory access one at a time, in program order.
One access needs to be complete before the next can start.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

 In the processor pipeline, memory accesses can be overlapped
or reordered.

o But they must go to the cache in program order.
o A load is complete when the block has been read from

the cache.
o A store is complete when an invalidation has been posted

(on a bus) or acknowledged (see details in §10.2.1).

Example of SC Ordering
 S1: ld R1, A S1 must complete before S2,
 S2: ld R2, B S2 before S3, etc.
 S3: st R3, C
 S4: st R4, D
 S5: ld R5, D
Implications

 If S1 is a cache miss but S2 is a cache hit, S2 still must wait
until S1 is completed. Same with S3 and S4.

 S4 must wait for S3 to complete, even though stores are often
retired early.

 S5 must wait for S4 to complete, even though they are to the
same location!

Improving SC performance
Via prefetching
We still have to obey ordering, but we can make each load/store
complete faster, e.g. by converting cache misses into cache hits:

 Employ load prefetching
o As soon as address is known/predictable,

 fetch before previous loads have completed,
o issue a prefetch request to fetch the block in

Exclusive/Shared state

Lecture 19 Architecture of Parallel Computers 7

 Employ store prefetching
o As soon as address is known/predictable, issue a

prefetch request to fetch the block in Modified state

But this is not a perfect strategy. Why not?

 Prefetch too late

 Prefetch too early

Via speculation
We can violate ordering, but undo the effect if atomicity is violated.

 The ability to undo execution and re-execute is already present in
out-of-order processors (as covered in ECE 563).

o So, we only need to determine when atomicity has been
violated.

 Consider load A, followed by load B

o In strict SC, load B must wait until load A completes
o With speculation, load B accesses the cache anyway; the

processor just marks load B as speculative
o If B is invalidated before it “retires,” atomicity has been

violated.
o In this case, the architecture cancels B and re-executes it.

Store speculation is harder, because stores cannot be canceled.
Hence, only load speculation is employed.

Lecture 20 Architecture of Parallel Computers 1

Relaxed Memory-Consistency Models
Review. Why are relaxed memory-consistency models needed?
How do relaxed MC models require programs to be changed?

The “safety net” between operations whose order needs to be
guaranteed is often a fence instruction.

 The fence ensures that memory operations that are “younger”
are not issued until the older mem ops have globally performed.
The newer instruction must

o wait until all older writes have been posted on the bus (or
received InvAck);

o wait until all older reads have completed;
o flush the pipeline to avoid issuing younger mem ops early

 Programmers must insert fences.

What if amateur programmers perform their own synchronization, and
forget fences?

A continuum of consistency models
Sequential consistency is one view of what a programming model
should guarantee.

Let us introduce a way of diagramming consistency models.
Suppose that—

• The value of a particular memory word in processor 2’s local
memory is 0.

• Then processor 1 writes the value 1 to that word of memory.
Note that this is a remote write.

• Processor 2 then reads the word. But, being local, the read
occurs quickly, and the value 0 is returned.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

What’s wrong with this?

This situation can be diagrammed like this (the horizontal axis
represents time):

P1: W (x)1
P2: R (x)0

Depending upon how the program is written, it may or may not be
able to tolerate a situation like this.

But, in any case, the programmer must understand what can happen
when memory is accessed in a DSM system.

Sequential consistency
Sequential consistency: The result of any execution is the same as
if

• the memory operations of all processors were executed in
some sequential order, and

• the operations of each individual processor appear in this
sequence in the order specified by its program.

Sequential consistency does not mean that writes are instantly visible
throughout the system (it would be impossible to implement that
anyway).

The example below illustrates two sequentially consistent executions.

Note that a read from P2 is allowed to return an out-of-date value
(because it has not yet “seen” the previous write).

P1: W (x)1 P1: W (x)1
P2: R (x)0 R (x)1 P2: R (x)1 R (x)1

From this we can see that running the same program twice in a row in
a system with sequential consistency may not give the same results.

Lecture 20 Architecture of Parallel Computers 3

Causal consistency
The first step in weakening the consistency constraints is to
distinguish between events that are potentially causally connected
and those that are not.

Two events are causally related if one can influence the other.

P1: W (x)1
P2: R (x)1 W (y)2

Here, the write to x could influence the write to y, because

On the other hand, without the intervening read, the two writes would
not have been causally connected:

P1: W (x)1
P2: W (y)2

The following pairs of operations are potentially causally related:

• A read followed by a later write by the same processor.
• A write followed by a later read to the same location.
• The transitive closure of the above two types of pairs of

operations.

Operations that are not causally related are said to be concurrent.

Causal consistency: Writes that are potentially causally related
must be seen in the same order by all processors.

Concurrent writes may be seen in a different order by different
processors.

Here is a sequence of events that is allowed with a causally
consistent memory, but disallowed by a sequentially consistent
memory:

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

P1: W (x)1 W (x)3
P2: R (x)1 W (x)2
P3: R (x)1 R (x)3 R (x)2
P4: R (x)1 R (x)2 R (x)3

Why is this not allowed by sequential consistency?

Why is this allowed by causal consistency?

What is the violation of causal consistency in the sequence below?

P1: W (x)1
P2: R (x)1 W (x)2
P3: R (x)2 R (x)1
P4: R (x)1 R (x)2

Without the R (x)1 by P2, this sequence would’ve been causally
consistent.
Implementing causal consistency requires the construction of a
dependency graph, showing which operations depend on which other
operations.

Processor consistency
Causal consistency requires that all processes see causally related
writes from all processors in the same order.

The next step is to relax this requirement, to require only that writes
from the same processor be seen in order. This gives processor
consistency.

Lecture 20 Architecture of Parallel Computers 5

Processor consistency: Writes performed by a single processor are
received by all other processors in the order in which they were issued.
Writes from different processors may be seen in a different order by
different processors.

Processor consistency would permit this sequence that we saw
violated causal consistency:

P1: W (x)1
P2: R (x)1 W (x)2
P3: R (x)2 R (x)1
P4: R (x)1 R (x)2

Another way of looking at this model is that all writes generated by
different processors are considered to be concurrent.

Note: Some definitions of processor consistency require cache
coherence too. Processor consistency without cache coherence is
called PRAM consistency.

Exercise: What is the strongest consistency model that each of the
following satisfy?

P1: W (x)1
P2: R (x)1 W (x)2
P3: R (x)1 R (x)2
P4: R (x)2 R (x)1

P1: W (y)1
P2: R (x)1 W (y)2
P3: R (y)1 R (y)2
P4: R (y)2 R (y)1

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

P1: W (x)1
P2: R (x)1 W (y)2
P3: R (x)1 R (y)2
P4: R (y)2 R (x)1

Sometimes processor consistency can lead to counterintuitive results.
Assume that a and b are initialized to 0.

P1: P2:
a = 1;
if (b == 0)
 kill(p2);

b = 1;
if (a == 0)
 kill(p1);

At first glance, it seems that no more than one process should be
killed.

With processor consistency, however, it is possible for both to be
killed. Explain how.

What processor consistency guarantees

 SC ensures ordering of
o LD LD
o LD ST
o ST LD
o ST ST

 PC removes the ST LD constraint, with significant implications
for ILP:

o Values can be loaded into other caches, even if there’s a
store to the same location in some write buffer.

o Loads do not wait for stores to complete (“perform”), they
access the cache right away (without being speculative!).

o A load dependent on an older store (in the same
processor) can “bypass” (directly obtain the store value
before it is stored).

 PC also removes write atomicity.

Lecture 20 Architecture of Parallel Computers 7

 How close is PC to programmers’ expectation?
o Most of the time, very close (e.g., post-wait

synchronization works correctly)
o Major OSes are ported to PC with relative ease

 Cases that cause errors in PC usually are due to races that
also happen in SC.

o However, debugging races in PC is more difficult.

Weak ordering
Processor consistency is still stronger than necessary for many
programs, because it requires that writes originating in a single
processor be seen in order everywhere.

But it is not always necessary for other processors to see writes in
order—or even to see all writes, for that matter.

Suppose a processor is in a tight loop in a critical section, reading
and writing variables.

Other processes aren’t supposed to touch these variables until the
process exits its critical section.

Load

Load

Store

Store

Load
Program
execution

This load
bypasses
2 stores

P1:
data = 2000;
flag = 1;

P2:
while (flag == 0) {};
print data;

P1:
flag1 = 1;
if (flag2 == 0)
 …

P2:
flag2 = 1;
if (flag1 == 0)
 …

PC fails to produce SC results, because PC does
not guarantee ordering betw. store & younger load

PC produces SC results, because
ordering between 2 stores is preserved.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

Under processor consistency, the memory has no way of knowing
that other processes don’t care about these writes, so it has to
propagate all writes to all other processors in the normal way.

To relax our consistency model further, we have to divide memory
operations into two classes and treat them differently.

• Accesses to synchronization variables are sequentially consistent.
• Accesses to other memory locations can be treated as concurrent.

This strategy is known as weak ordering.

With weak ordering, we don’t need to propagate accesses that occur
during a critical section.

We can just wait until the process exits its critical section, and then—
• make sure that the results are propagated throughout the

system, and
• stop other actions from taking place until this has happened.

Similarly, when we want to enter a critical section, we need to make
sure that all previous writes have finished.

These constraints yield the following definition:

Weak ordering: A memory system exhibits weak ordering iff—

1. Accesses to synchronization variables are sequentially
consistent.

2. No access to a synchronization variable can be performed until
all previous writes have completed everywhere.

3. No data access (read or write) can be performed until all
previous accesses to synchronization variables have been
performed.

Thus, by doing a synchronization before reading shared data, a
process can be assured of getting the most recent values written by
other processes before their immediately preceding Ss.

Lecture 20 Architecture of Parallel Computers 9

Note that this model does not allow more than one critical section to
execute at a time, even if the critical sections involve disjoint sets of
variables.

This model puts a greater burden on the programmer, who must
decide which variables are synchronization variables.

Weak ordering says that memory does not have to be kept up to date
between synchronization operations.

This is similar to how a compiler can put variables in registers for
efficiency’s sake. Memory is only up to date when these variables
are written back.

If there were any possibility that another process would want to read
these variables, they couldn’t be kept in registers.

This shows that processes can live with out-of-date values, provided
that they know when to access them and when not to.

The following is a legal sequence under weak ordering. Can you
explain why?

P1: W (x)1 W (x)2 S
P2: R (x)2 R (x)1 S
P3: R (x)1 R (x)2 S

Here’s a sequence that’s illegal under weak ordering. Why?

P1: W (x)1 W (x)2 S
P2: S R (x)1

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 10

Release consistency
Weak ordering does not distinguish between entry to critical section
and exit from it.

Thus, on both occasions, it has to take the actions appropriate to
both:

• making sure that all locally initiated writes have been
propagated to all other memories, and

• making sure that the local processor has seen all previous
writes anywhere in the system.

Load/Store
:

Load/Store

Sync

Load/Store
:

Load/Store

Sync

Load/Store
:

Load/Store

Synch may be implemented as a lock
acquire/release

Before a synch, all previous ops must finish.
Before any ld/st, all previous synch must finish.
Why safe? Typically within a critical section, we have
made sure that only one process is inside, thus safe
to reorder anything in the critical section.
Outside a critical section, we usually do not care
about the order of mem ops (we would have used
synchronization if we had cared).
How to know whether a particular ld/st serves as a
synchronization point?
 Assume all atomic instructions are

synchronization points
o fetch-and-op, test-and-set

 Assume all load linked (LL) and store conditional
(SC) are synchronization points

P1
P2

Lecture 20 Architecture of Parallel Computers 11

If the memory could tell the difference between entry and exit of a
critical section, it would only need to satisfy one of these conditions.

Release consistency provides two operations:

• acquire operations tell the memory system that a critical section
is about to be entered.

• release operations say a c. s. has just been exited.

It is possible to acquire or release a single synchronization variable,
so more than one critical section can be in progress at a time.

When an acquire occurs, the memory will make sure that all the local
copies of shared variables are brought up to date.

When a release is done, the shared variables that have been
changed are propagated out to the other processors.

But—
• doing an acquire does not guarantee that locally made changes

will be propagated out immediately.
• doing a release does not necessarily import changes from other

processors.

Here is an example of a valid event sequence for release consistency
(A stands for “acquire,” and Q for “release” or “quit”):

P1: A (L) W (x)1 W (x)2 Q (L)
P2: A (L)R (x)2 Q (L)
P3: R (x)1

Note that since P3 has not done a synchronize, it does not
necessarily get the new value of x.

Release consistency: A system is release consistent if it obeys
these rules:

1. Before an ordinary access to a shared variable is performed, all
previous acquires done by the process must have completed.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 12

2. Before a release is allowed to be performed, all previous reads
and writes done by the process must have completed.

3. The acquire and release accesses must be processor
consistent.

If these conditions are met, and processes use acquire and release
properly, the results of an execution will be the same as on a
sequentially consistent memory.

Summary: Sequential consistency is possible, but costly. The model
can be relaxed in various ways.
Consistency models not using synchronization operations:

Type of
consistency Description

Sequential All processes see all shared accesses in same
order.

Causal All processes see all causally related shared
accesses in the same order.

Processor All processes see writes from each processor in
the order they were initiated. Writes from different
processors may not be seen in the same order,
except that writes to the same location will be seen
in the same order everywhere.

Consistency models using synchronization operations:

Type of
consistency

Description

Weak Shared data can only be counted on to be
consistent after a synchronization is done.

Release Shared data are made consistent when a critical
region is exited.

Lecture 20 Architecture of Parallel Computers 13

The following diagram contrasts various forms of consistency.

Sequential
consistency

Processor
consistency

Weak
ordering

Release
consistency

R
↓
W
↓
R
↓
R
↓
W
:
:

R
↓
R
↓
W
↓

{W, R}
:
:

{M, M}
↓

SYNCH
↓

{M, M}
↓

SYNCH
:
:

{M, M}
↓

ACQUIRE
↓

{M, M}
↓

RELEASE

 {M, M}
 ↓
RELEASE

 RELEASE
 :

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 1

Scalable Multiprocessors
[§10.1] A scalable system is one in which resources can be added to
the system without reaching a hard limit.
What does scalability mean?

• Avoids inherent design limits on resources.
• Bandwidth increases with # of processors p.
• Latency does not.
• Cost increases slowly with p.

Why doesn’t a bus-based design scale?

 Physical constraints

 Protocol constraints

 Contention everywhere: bus, snooper, memory

Scalability and coherence

All of the cache-coherent systems we have talked about until now
have had a bus.

Not only does the bus guarantee serialization of transactions; it also
serves as a convenient broadcast mechanism to assure that each
transaction is propagated to all other processors’ caches.

How can cache coherence can be provided on a machine with
physically distributed memory and no globally snoopable
interconnect?

 To support a shared address space?

 To be able to satisfy a cache miss transparently from local or
remote memory?

This means data is replicated widely. How can it be kept coherent?

Lecture 21 Architecture of Parallel Computers 2

Scalable network

CA

P

$

Switch

M

Switch Switch

Scalable distributed memory machines consist of P-C-M nodes
connected by a network.

The communication assist interprets network transactions and forms
the interface between the processor and the network.

A coherent system must do these things.

 Provide a set of states, a state-transition diagram, and actions.

 Manage the coherence protocol.
(0) Determine when to invoke the coherence protocol
(a) Find a source of information about the state of this block

in other caches.

(b) Find out where the other copies are
(c) Communicate with those copies (invalidate/update)

(0) is done the same way on all systems

• The state of the line is maintained in the cache
• The protocol is invoked if an “access fault” occurs on the line.

The different approaches to scalable cache coherence are
distinguished by their approach to (a), (b), and (c).

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 3

Bus-based coherence
In a bus-based coherence scheme, all of (a), (b), and (c) are done
through broadcast on bus.

• The faulting processor sends out a “search.”
• Other processors respond to the search probe and take

necessary action.

We could do this in a scalable network too—broadcast to all
processors, and let them respond. Why don’t we?

Why not? On a scalable network, every fault leads to at least p
network transactions.

P
ro

to
co

l

 Interconnection

Bus Point-to-point

Snoopy Least scalable More scalable

Directory — Most scalable

Directory-based protocol

 Instead of broadcasting to find out who has the block, keep
track of copies in the directory.

 Invalidation requests must be sent (individually) to all sharers;
can you explain why this doesn’t render the protocol too slow?

 Used with distributed shared memory (DSM) multiprocessors

 Can scale to tens or hundreds of processors.

Lecture 21 Architecture of Parallel Computers 4

How to map memory on a DSM?
 Block interleaving?

o distributes data
around

o hard to exploit
spatial locality

 No interleaving?

[pfr = page frame]

Of course, the OS
is responsible for
placing pages in
page frames.

 The OS must be involved in deciding where to allocate a page.

Answer these questions …

 How are pages typically replaced on a uniprocessor?

 Why is the decision different on a multiprocessor?

 Why is “first touch” a sensible policy for many situations?

 Why is “first touch” grossly suboptimal for many parallel
algorithms?

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 5

 What is an alternative allocation policy that often works well?

Handling misses in directory-based coherence
The basic idea of a directory-based approach is this.

• Every memory block has associated directory information;
it keeps track of copies of cached blocks and their states.

• On a miss, it finds the directory entry, looks it up, and
communicates only with the nodes that have copies (if
necessary).

In scalable networks, communication with the directory and with
copies occurs through network transactions.

Let us assume that the directory is distributed, with each node
holding directory information for the blocks it contains.

This node is called the home node for these blocks.

What happens on a read miss?

Lecture 21 Architecture of Parallel Computers 6

P

A M/D
C

P

A M/D

C

P

A M/D
C

Read request
to directory

Reply with
owner identity

Read req.
to owner

Data
Reply

Revision message
to directory

1.

2.

3.

4a.

4b.

Requestor

Node with
dirty copy

Directory node
for block

The requesting node
sends a request
transaction over the
network to the home
node.

The home node
responds with the
identity of the
owner—the node that
currently holds a valid
copy of the block.

The requesting node
then gets the data
from the owner, and
revises the directory
entry accordingly.

On a write
miss, the
directory
identifies
copies of
the block,
and invali-
dation or
update
messages
may be
sent to the
copies.

P

A M/D
C

P

A M/D
C

P

A M/D
C

RdEx request
to directory

Reply with
sharers identity

Inval. req.
to sharer

1.

2.

P

A M/D

C

Inval. req.
to sharer

Inval. ack Inval. ack

3a. 3b.

4a. 4b.

Requestor

Directory node

Sharer Sharer

Now, see if you can tell how many directory messages are needed in
each of several cases.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 7

One major difference from bus-based schemes is that we can’t
assume that a write has

What information will be held in the directory?

• There will be a dirty bit telling if the block is dirty in some cache.
• Not all state information (MESI, etc.) needs to be kept in the

directory, only enough to determine what actions to take.
 Sometimes the state information in the directory will be out of

date. Why?

 So, sometimes a directory will send a message to the cache
that is no longer correct when it is received.

Flat vs. hierarchical directories
When a miss occurs, how do we find the directory information?
There are two main alternatives.

 A flat directory scheme. Directory information is in a fixed
place, usually at the home (where the memory is located).

o On a miss, a transaction is sent to the home node.

 A hierarchical directory scheme. Directory information is
organized as a tree, with the processing nodes at the leaves.

o Each node keeps track of which, if any, of its (immediate)
children have a copy of the block.

o When a miss occurs, the directory information is found by
traversing up the hierarchy level until the block is found
(in the “appropriate state”).

o The state indicates, e.g., whether copies of the block exist
outside the subtree of this directory.

Lecture 21 Architecture of Parallel Computers 8

How do flat schemes store information about copies?

 Memory-based schemes store the information about all cached
copies at the home node of the block.

 Cache-based schemes distribute information about copies among
the copies themselves.

o The home contains a pointer to one cached copy of the
block.

o Each copy contains the identity of the next node that has
a copy of the block.

This means that the copies are located through network transactions.

P

Cache

P

Cache

P

Cache

Main Memory
(Home)

Node 0 Node 1 Node 2

Centralized Distributed

Hierarchical Flat

Memory-based Cache-based

Directory Schemes

How to find source of
directory information

How to locate copies

DASH, Origin
Alewife, HAL

SCI,
Sequent NUMA-Q

bad for scalability (why not bus?)
mostly early machines

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 9

When do hierarchical schemes outperform flat schemes?

Why might hierarchical schemes be slower than flat schemes?

Summary
Flat Schemes:

• Issue (a): finding source of directory data
• go to home, based on address

• Issue (b): finding out where the copies are
• memory-based: all info is in directory at home
• cache-based: home has pointer to first element of distributed

linked list

• Issue (c): communicating with those copies
• memory-based: point-to-point messages (perhaps coarser

on overflow)
– can be multicast or overlapped

• cache-based: part of point-to-point linked list traversal to
find them
– serialized

Hierarchical Schemes:

• all three issues through sending messages up and down tree
• no single explict list of sharers
• only direct communication is between parents and children

Distributing the directory
The directory needs to be distributed, but how many “pieces” should
there be, and where should they be located?

Classical DSM
P-C-M nodes (p. 2, above) are connected to form a distributed shared
memory system.

Lecture 21 Architecture of Parallel Computers 10

LL cache miss request to directory determined by PFA of block

Directory is located at the same node as the block. Why?

Multicore with coherent LLCs
Directory entries point to cache lines, not main memory!

If the LLC misses, block can be fetched from another cache.

If it’s not cached, then it needs to go through a memory controller
(MC) to fetch it from main memory.

The number of memory controllers is limited by pin count, which may
cause bottlenecks.

Multicore with coherent non-LLCs
In the diagram below,

 the L3 cache is “physically distributed but logically shared,” and

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 11

 the L2 caches are kept coherent.

L2 miss L3 directory searched, block retrieved from L3 or memory

In this case, the directory can be merged with the L3 tag array!

Not only does the L3 tag tell which block the L3 line holds, but also

Benefit: Lower miss latency for L2 and L3.

Drawback: Directory can hold only as many entries as there are lines
in the L3.

So the L3 cache has to include all blocks cached in the L2. Why?

Name an advantage of directory in coherent LLC vs. classical DSM.

Name an advantage of directory in coherent non-LLC vs. coherent
LLC.

Lecture 22 Architecture of Parallel Computers 1

Basic DSM Cache Coherence

[§10.3] Let us start off by considering a full bit-vector approach.

For each block of memory, assuming there are k processors, it
maintains at the home node of the block …

 k presence bits p[..]
 1 dirty bit D

Cache state is represented the same way as in bus-based designs
(MSI, MESI, etc.).

 On a read miss by processor i, the home node reacts this way:

 If (D == 0) { supply data; p[i] = 1; }

 else { send intervention to owner; update home; D = 0;
p[i] = 1; supply data to i;}

 On a write miss by processor i; tell how the home reacts:
o if (D == 0) { ; D = 1; p[i]=1;

supply data to node i; }

o else { ; p[owner] = 0;
p[i] = 1 ; supply data to i;}

• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

On the replacement of a dirty block by node i, the data is written back
to memory and the directory is updated to turn off the dirty bit and p[i].

On the replacement of a shared block, the directory may or may not
be updated.

How does a directory help? It keeps track of which nodes have
copies of a block, eliminating the need for .

Would directories be valuable if most data were shared by most of
the nodes in the system?

Fortunately, the number of valid copies of data on most writes is
small.

The attached animation uses the MESI protocol, with 3 block states in
main memory:

 EM (exclusive or modified)
 S (shared)
 U (unowned)

 Network transactions for coherence

o Read: read request
o ReadX: read exclusive (or write) request
o Upgr: upgrade request
o ReplyD: home replies with data to requestor
o Reply: home replies to requestor with IDs of sharers
o Inv: home asks sharer to invalidate
o WB+Inv: home asks owner to flush and invalidate
o WB+Int: home asks owner to flush and change to S
o Flush: owner flushes data to home + requestor
o InvAck: sharer/owner acks an invalidation msg

Lecture 22 Architecture of Parallel Computers 3

o Flush+InvAck: Flush, piggybacking an InvAck message

 Notation

o Transaction (Source Destination)
o H = Home node

The following example is used in the animation:

Proc
action

P1
state

P2
state

P3
state

Dir state
@home Network messages # of

hops

R1 E – – EM, 100 Read (P1 H),
ReplyD (H P1) 2

W1 M – – EM, 100 — 0

R3 S – S S, 101
Read (P3 H),
WB+Int (H P1),
Flush (P1 H, P3)

3

W3 I – M EM, 001

Upgr (P3 H),
Reply (H P3) //
Inv (H P1),
InvAck(P1 P3)

3

R1 S – S S, 101
Read (P1 H),
WB+Int (H P3),
Flush (P3 H, P1)

3

R3 S – S S, 101 — 0

R2 S S S S, 111 Read (P2 H),
ReplyD (H P2) 2

Scaling with number of processors
In order for directory schemes to be practical, they must scale
gracefully.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

• Scaling of memory and directory bandwidth
 Centralized directory is bandwidth bottleneck, just like
centralized memory.

 How can we maintain directory information in a
distributed way?

• Scaling of performance characteristics
 traffic: # of network transactions each time protocol is
invoked

 latency: # of network transactions in critical path each
time

• Scaling of directory storage requirements
 Number of presence bits needed grows as the number
of processors.

 E.g., 64-byte block size and 1024 processors. How
many bits in block, vs. # of bits in directory?

Directory organization affects all of these issues.

Organizing a memory-based directory scheme
All info about copies is colocated with
the block itself at the home

This works just like a centralized
scheme, except that it is distributed.

Scaling of performance characteristics
• Traffic on a write is proportional

to number of sharers.
• Latency? Can issue invalidations

in parallel.

P

M

Scaling of storage overhead? Assume representation is a full bit-
vector.

Optimizations for full bit-vector schemes

Lecture 22 Architecture of Parallel Computers 5

• Increase (1) size (reduces storage overhead
proportionally).

• Use multicore nodes (one bit per multicore node, not per
processor)

• still scales as pm, but only a problem for very large
machines
– 256 procs, 4 per chip, 128B line: (2) % o’head

► Reducing “width”: addressing the p term
• Observation: most blocks are cached by only few nodes
• Instead of keeping a bit per node, make entry contain a few

 (3) .
If p = 1024, 10-bit can use 100 and
still save space.

• Sharing patterns indicate a few pointers should suffice (five
or so).

• We also need an overflow strategy for when there are more
sharers than pointers.

► Reducing “height”: addressing the m term.

• Observation: number of memory blocks >> number of cache
lines.

• Thus, most blocks will not be cached at any particular time;
therefore, most directory entries are useless at any given
time
• organize directory as a cache, rather than having one

entry per memory block (key is (4) , value is (5))

Organizing a cache-based directory scheme.
In a cache-based scheme, the home node only holds a pointer to the
rest of the directory information.

The copies are linked together via a distributed list that weaves
through caches.

Each cache tag has a pointer that points to the next cache with a
copy.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

• On a read, a processor adds itself to the head of the list
(communication needed).

• On a write, it makes itself the head node on the list, then
propagates a chain of invalidations down the list.
Each invalidation must be acknowledged.

• On a write-back, the node must delete itself from the list (and
therefore communicate with the nodes before and after it).

Disadvantages: All operations require communicating with at least
three nodes (node that is being operated on, previous node, and next
node).

Write latency is proportional to number of sharers.

Synchronization is needed

Advantages: Directory overhead is small.

Work of performing invalidations can be distributed among sharers.

The IEEE Scalable Coherent Interface has formalized protocols for
handling cache-based directory schemes.

The SSCI protocol
SCI (Scalable Coherence Interface) protocol

o IEEE standard, ratified in 1993
o 7 state bits, 29 stable states + many pending states

For illustration we will use Simple SCI (SSCI)
o Retains similarity with full-bit vector protocol:

MESI states in the cache
U, S, EM states in the memory directory
Replaces the presence bits with a pointer

o Similar features to SCI

Lecture 22 Architecture of Parallel Computers 7

Overall protocol operation
Doubly linked list

o Many possible race conditions, which are mostly ignored
in the illustration

Additional coherence network transactions (in addition to those
used in full bit-vector approach):

o WB+Int+UpdPtr
o UpdPtr: update next/prev/head pointers

Here is the example used in the animation.

Proc
action

P1
state

P2
state

P3
state

Dir
state

@home
Network message

of
hops

R1 E,0,0 – – EM, 1 Read (P1 H),
ReplyD (H P1) 2

W1 M,0,0 – – EM, 1 — 0

R3 S,3,0 – S,0,1 S, 3

Read (P3 H),
Reply (H P3),
WB+Int+UpdPtr (P3 P1),
Flush (P1 H, P3)

4

W3 I,3,0 – M,0,0 EM, 3
Upgr (P3 H) //
Inv (P3 P1)
InvAck(P1 P3)

2

R1 S,0,3 – S,1,0 S, 1

Read (P1 H),
Reply (H P1),
WB+Int+UpdPtr (P1 P3),
Flush (P3 H, P1)

4

R3 S,0,3 – S,1,0 S, 1 — 0

R2 S,2,3 S,0,1 S,1,0 S, 2
Read (P2 H),
ReplyD/ID (H P2),
UpdPtr (P2 P1)

3

Start state. All caches empty
and main memory has A = 1 in
state U. Bit vector is 000.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 1 U 000
Main memory

Directory

P1 A

Processor P1 attempts to
read A from its cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Rd &A
P1 Read
Dir ReplyD
P1 Read
Dir ReplyD

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 1 U 000
Main memory

Directory

P1 A

P1’s cache sends a Read
request to the home
directory. BV is set to 100.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Rd &A
P1 Read
Dir ReplyDDir ReplyD

P1 Rd &A&&

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

Main memory

Directory

A = 1 EM 100

P1 A

Directory replies with value
of A and the state of A in
P1’s cache is set to E.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Rd &A
P1 Read
Dir ReplyD
P1 Read
P1 Rd &A&

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

Main memory

Directory

A = 1 E

A = 1 EM 100

P1 A

Processor P1’s read
completes.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 1 EM 100
Main memory

Directory

A = 1 E

P1 A

Processor P1 attempts to write
A=2 in its cache. Value is
modified and state is set to M.

P1

Cache
A = 2 M

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 1 EM 100
Main memory

Directory

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A

P1 Wr A, #2

Processor P1 completes
writing A=2 to its cache.

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 1 EM 100
Main memory

Directory

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
A = 2 M

P1 A

Processor P3 attempts to
read A from its cache,
misses.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2

P3 Rd &A
P3 Read
Dir WB+INT
P1 Flush

P3PP Read
Dir WB+INT
P1 Flush

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 1 EM 100
Main memory

Directory

A = 2 M

P3 A

P3 A

P3’s cache sends Read
request to home directory.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2

P3 Rd &A
P3 Read
Dir WB+INT
P1 Flush
Dir WB+INT
P1 Flush

P3PP Rd &A&&

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 1 EM 100
Main memory

Directory

A = 2 M

P3 A

Directory sends owning
cache a WB+Int. Owner P1
changes state to S.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2

P3 Rd &A
P3 Read
Dir WB+Int
P1 FlushP1 Flush

P3PP Read
P3PP Rd &A&

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 1 EM 100
Main memory

Directory

A = 2A = 2 S

P3 A

P1 flushes the block. Directory
and P3 update the block and
set state = S. BV is set to 101.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2

P3 Rd &A
P3 Read
Dir WB+INT
P1 Flush

P3PP Read
Dir

P3PP Rd &A&&

WB+INT

P1

Cache

P2

Cache

P3

Cache
A=2 S

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2 S 101
Main memory

Directory

A = 2A = 2 S

P3 A

Processor P3 completes
read operation from its
cache.

P1

Cache
A = 2 S

P2

Cache

P3

Cache
A = 2 S

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2 S 101
Main memory

Directory

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2

InvAckP1

P3 A

Processor P3 attempts to
write A in its cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A

P3 Wr &A
P3 Upgr
Dir Inv, Reply

InvAckP1

P3PP Upgr
Dir Inv, Reply

P1

Cache
A = 2 S

P2

Cache

P3

Cache
A = 2 S

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2 S 101
Main memory

Directory

P1 InvAck

P3 sends Upgr request to the
directory. BV is set to 001, as
P3 becomes the owner.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A

P3 Wr &A
P3 Upgr
Dir Inv, Reply
P1 InvAck
Dir Inv, Reply

P3PP Wr &A&

P1

Cache
A = 2 S

P2

Cache

P3

Cache
A = 2 S

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2 EM 001
Main memory

Directory

P3 A

P1 InvAckP1 InvAck

Directory sends Inv to P1
and Reply to P3.
P1 invalidates block.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A

P3 Wr &A
P3 Upgr
Dir Inv, Reply
P3PP
P3PP Wr &A&

Upgr

P1

Cache
A = 2 I

P2

Cache

P3

Cache
A = 2 S

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 001

P3 A

P1 InvAck

Processor P1 sends InvAck
and P3 proceeds with the
write, becomes owner.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A

P3 Wr &A
P3 Upgr
Dir Inv, Reply
P3PP Upgr
Dir

P3PP Wr &A&

Inv, Reply

P1

Cache
A = 2 I

P2

Cache

P3

Cache
A = 3 M

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 001

P3 A

Processor P3 completes
writing A=3 to its cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A

P1

Cache
A = 2 I

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 001

A = 3 M

P3 A

P1

Cache
A = 2 I

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 001

P1 A

Processor P1 attempts to
read A from its cache,
misses.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3

P1 Rd &A
P1 Read
Dir WB+INT
P3 Flush

P1 Read
Dir WB+INT
P3PP Flush

A = 3 M

P1 A

P1’s cache sends Read
request to home directory.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3

P1 Rd &A
P1 Read
Dir WB+INT
P3 Flush
Dir WB+INT
P3PP Flush

P1 Rd &A&&

P1

Cache
A = 2 I

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 001

A = 3 M

P1 A

Directory sends WB+Int to
the owner cache. The owner
is downgraded to state S.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3

P1 Rd &A
P1 Read
Dir WB+Int
P3 Flush

P1 Read
P1 Rd &A&&

P3PP Flush

P1

Cache
A = 2 I

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 001

A = 3 S

P1 A

P3 flushes the block to the dir-
ectory and P1’s cache. State
is set to S. BV is set to 101.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3

P1 Rd &A
P1 Read
Dir WB+INT
P3 Flush

P1 Read
Dir

P1 Rd &A&&

WB+INT

P1

Cache
A = 3 S

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 101

A = 3 S

P1 A

Processor P1 completes
reading A from its cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3

P1

Cache
A = 3 S

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 101

A = 3 S

P3 A

Processor P3 attempts to
read A from its cache, hits.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read AP2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A

P3 Rd &A
P3 returns dataP3PP returns data

P1

Cache
A = 3 S

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 101

A = 3 S

P3 A

P3’s cache returns the value
of A immediately.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read AP2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A

P3 Rd &A
P3 returns data
P3PP Rd &A&&

P1

Cache
A = 3 S

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 101

A = 3 S

P3 A

Processor P1 completes
reading A from its cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read AP2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A

P1

Cache
A = 3 S

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 101

A = 3 S

P2 A

Processor P2 attempts to
read A from its cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A

P2 Rd &A
P2 Read
Dir ReplyD
P2P Read
Dir ReplyD

P1

Cache
A = 3 S

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 101

A = 3 S

P2 A

P2’s cache sends a Read
request to its directory.
BV is set to 111.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A

P2 Rd &A
P2 Read
Dir ReplyDDir ReplyD

P2P Rd &A&

P1

Cache
A = 3 S

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S

A = 3 S

111

P2 A

Directory returns the block
and state with ReplyD.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A

P2 Rd &A
P2 Read
Dir ReplyD
P2P Read
P2P Rd &A&

P1

Cache
A = 3 S

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 111

A = 3 SA = 3 S

P1

Cache
A = 3 S

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 111

A = 3 S

P2 A

Processor P2 finishes Read
operation.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A

A = 3 S

Start state. All caches empty
and main memory has A = 1 in
state U.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 1 U 0
Main memory

Directory

P1 A

Processor P1 attempts to
read A from its cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Rd &A
P1 Read
Dir ReplyD
P1 Read
Dir ReplyD

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 1 U 0
Main memory

Directory

P1 A

P1’s cache sends a Read
request to the home
directory.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Rd &A
P1 Read
Dir ReplyDDir ReplyD

P1 Rd &A&&

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

Main memory

Directory

A = 1 EM 1

P1 A
Directory replies with value of A
and the state of A in P1’s cache
is set to E. The cache line con-
tains fields state, prev, and next

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Rd &A
P1 Read
Dir ReplyD
P1

P1 Rd &A&
Read

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

Main memory

Directory

A = 1
E,0,0

A = 1 EM 1

P1 A

Processor P1’s read
completes.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 1 EM 1
Main memory

Directory

A = 1
E,0,0

P1 A

Processor P1 attempts to write
A=2 in its cache. Block is
modified and state is set to M.

P1

Cache
A = 2
M,0,0

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 1 EM 1
Main memory

Directory

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A

P1 Wr A, #2

Processor P1 completes
writing A=2 to its cache.

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 1 EM 1
Main memory

Directory

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
A = 2
M,0,0

P1 A

Processor P3 attempts to
read A from its cache,
misses.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2

P3 Rd &A
P3 Read

P3 WB+INT+UpdPtr
P1 Flush

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 1 EM 1
Main memory

Directory

P3 A

Dir Reply
P3PP WB+INT+UpdPtr
P1 Flush

P3PP Read
Dir Reply

A = 2
M,0,0

P3 Rd &A

P3 A

P3 cache sends Read
request to home directory.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 1 EM 1
Main memory

Directory

P3 WB+INT+UpdPtr
P1 Flush

Dir Reply
P3PP

P3PP Rd &A&

WB+INT+UpdPtr
P1 Flush

Dir Reply
P3 Read

A = 2
M,0,0

P3 Read
P3 Rd &A

P3 A

Directory sends Reply to P3.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 1 EM 1
Main memory

Directory

P3 WB+INT+UpdPtr
P1 Flush

P3PP Read

P3PP WB+INT+UpdPtr
P1

P3PP Rd &A&

Flush

Dir Reply

A = 2
M,0,0

Dir Reply

P3 A
P3 sends owning cache a
WB+Int+UpdPtr.
Owner P1 changes state to
S, with prev pointer to P3

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 1 EM 1
Main memory

Directory

A = 2
S,3,0

P3 Rd &A
P3 Read

P1 Flush

Dir Reply
P3PP Read

P1

P3PP Rd &A&&

Flush
P3 WB+Int+UpdPtr

P3 WB+INT+UpdPtr

P3 A

P1 flushes the block.
Directory state changes to
S,3 and P3’s state changes
to S with next pointing to P1

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2

P1

Cache

P2

Cache

P3

Cache
A=2

S,0,1

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 2 S 3
Main memory

Directory

A = 2
S,3,0

Dir Reply

P3 Rd &A
P3 Read

P3PP WB+INT+UpdPtr
Dir Reply
P3PP
P3PP Rd &A&&

Read

P1 Flush

P3 A

Processor P3 completes
read operation from its
cache.

P1

Cache
A = 2
S,3,0

P2

Cache

P3

Cache
A = 2
S,0,1

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 2 S 3
Main memory

Directory

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P3PP Write A = 3
P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2

InvAckP1

P3 A

Processor P3 attempts to
write A, which is in its
cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A

P3 Wr &A
P3 Upgr
Dir Inv, Reply

InvAckP1

P3PP Upgr
Dir Inv, Reply

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 2 S 3
Main memory

Directory

A = 2
S,3,0

A = 2
S,0,1

P1 InvAck

Processor P3 sends Upgr
request to the directory.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A

P3 Wr &A
P3 Upgr
Dir Inv, Reply
P1 InvAck
Dir Inv, Reply

P3PP Wr &A&

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 2 EM 3
Main memory

Directory

P3 A

A = 2
S,3,0

A = 2
S,0,1

P1 InvAckP1 InvAck

Directory sends Inv to P1
and Reply to P3.
P1 invalidates block.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A

P3 Wr &A
P3 Upgr
Dir Inv, Reply
P3PP Upgr
P3PP Wr &A&

P1

Cache

I,3,0

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 3

P3 A

A = 2 A = 2
S,0,1

P1 InvAck

Processor P1 sends InvAck
and P3 proceeds with the
write, becomes owner.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A

P3 Wr &A
P3 Upgr
Dir Inv, Reply
P3PP Upgr
Dir

P3PP Wr &A&

Inv, Reply

P1

Cache
A = 2
I,3,0

P2

Cache

P3

Cache
A = 3
M,0,0

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 3

P3 A

Processor P3 completes
writing A=3 to its cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 3

A = 3
M,0,0

P3 A

A = 2
I,3,0

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 3

P1 A

Processor P1 attempts to
read A from its cache,
misses.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3

P1 Rd &A
P1 Read

P1 WB+INT+UpdPtr
P3 Flush

Dir Reply
P1 Read

P1 WB+INT+UpdPtr
P3PP Flush

Dir Reply

A = 3
M,0,0

A = 2
I,3,0

P1 A

P1 cache sends Read
request to home directory.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 3

P1 Rd &A

P1 WB+INT+UpdPtr
P3 Flush

Dir Reply

P1 Rd &A&

P1 WB+INT+UpdPtr
P3PP Flush

Dir Reply
P1 Read

A = 3
M,0,0

A = 2
I,3,0

P1 A

Directory sends Reply to P1.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 3

P1 Rd &A
P1 Read

P1 WB+INT+UpdPtr
P3 Flush

P1 Read

P1 WB+INT+UpdPtr
P3PP

P1 Rd &A&&

Flush

Dir Reply

A = 3
M,0,0

A = 2
I,3,0

P1 A

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3

P1

Cache

P2

Cache

P3

Cache

Interconnection Topology

Main memory

Directory

Main memory

Directory

A = 2
Main memory

Directory

EM 3

S,1,0

P1 Rd &A
P1 Read

P3 Flush

Dir Reply

P1 Rd &A&&
P1 Read

P3PP Flush

Dir Reply
P1 WB+INT+UpdPtr

P1 sends WB+Int+UpdPtr to
the owner cache.
The owner is downgraded
to state S with prev set to P1

A = 3A = 2
I,3,0

P1 A
Processor P3 flushes the
block to the directory and
P1’s cache. State is set to
S with next pointer to P3

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3

P1

Cache
A = 3
S,0,3

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 1

A = 3
S,1,0

P1 Rd &A
P1 Read

P1 WB+INT+UpdPtr
Dir Reply
P1

P1 Rd &A&

WB+INT+UpdPtr
Dir
P1 Read

Reply

P3 Flush

P1 A

Processor P1 completes
reading A from its cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A
P3PP Read A
P2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3

P1

Cache
A = 3
S,0,3

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 1

A = 3
S,1,0

P3 A

Processor P3 attempts to
read A from its cache, hits.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read AP2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A

P3 Rd &A
P3 returns dataP3PP returns data

P1

Cache
A = 3
S,0,3

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 1

A = 3
S,1,0

P3 A

P3’s cache returns the value
of A immediately.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read AP2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A

P3 Rd &A
P3 returns data
P3PP Rd &A&&

P1

Cache
A = 3
S,0,3

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 1

A = 3
S,1,0

P3 A

Processor P1 completes
reading A from its cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read AP2PP Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 1

A = 3
S,0,3

A = 3
S,1,0

Dir ReplyD/ID

P2 A

Processor P2 attempts to
read A from its cache.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A

P2 Rd &A
P2 Read

P2 UpdPtr
Dir ReplyD/ID
P2P Read

P2PP UpdPtr

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 1

A = 3
S,0,3

A = 3
S,1,0

P2 A

P2’s cache sends a Read
request to its directory. Head
in directory is updated.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 2

Dir ReplyD/ID

P2 Rd &A

P2 UpdPtr
Dir ReplyD/ID
P2PP

P2P Rd &A&

UpdPtr

P2 Read

A = 3
S,0,3

A = 3
S,1,0

P2 A
Directory returns the block
and state with ReplyD/ID.
P2’s state becomes S with
next pointing to P1.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 2

A = 3
S,0,1

P2 Rd &A
P2 Read

P2 UpdPtr

P2PP Rd &A&&
P2PP Read

P2P UpdPtr
Dir ReplyD/ID

A = 3
S,0,3

A = 3
S,1,0

P2 A

P2 sends UpdPtr to P1.
P1 changes Next pointer to
point to P2 .

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A

P1

Cache

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 2

A = 3
S,1,0

A = 3
S,0,1

A = 3
S,2,3

Dir ReplyD/ID

P2 Rd &A
P2 Read
Dir ReplyD/ID
P2P
P2P Rd &A&

Read

P2 UpdPtr

P1

Cache
A = 3
S,2,3

P2

Cache

P3

Cache

Interconnection topology

Main memory

Directory

Main memory

Directory

A = 3
Main memory

Directory

S 2

P2 A

Processor P2 finishes Read
operation.

Trace
P1 Read A
P1 Write A = 2
P3 Read A
P3 Write A = 3
P1 Read A
P3 Read A
P2 Read A

P1 Read A
P1 Write A = 2
P3PP Read A
P3PP Write A = 3
P1 Read A
P3PP Read A

A = 3
S,0,1

A = 3
S,1,0

Lecture 22 Architecture of Parallel Computers 1

Scalable shared-memory multiprocessing and the Silicon Graphics S2MP
architecture1 (Dan Lenoski): [20a] Today I'd like to discuss scalable shared-
memory multiprocessing, and the S2MP architecture, which is at the heart of
SGI's latest multiprocessor.

Shared-memory multiprocessors, or SMPs, are the most popular form of
multiprocessing today, because they can handle both parallel and throughput
workloads.

They also offer powerful central resources, such as large memories and fast
secondary storage, that are sharable by a number of processors.

To date, the drawback of these systems has been their limited scalability and
high entry cost.

This talk introduces a new class of computer, the scalable shared-memory
multiprocessor, which removes the drawbacks of traditional SMP systems.

Here is an outline of the talk.

I. Today’s MP architectures. This introduces the scalable SMP, or SSMP.

II. Scaling the SMP model. This focuses on a particular SSMP, the Silicon
Graphics Origin architecture and its S2MP memory architecture.
III. SGI’s Origin.

IV. Design issues in Origin. … and then discuss some of the important
design tradeoffs.
V. Conclusion.

Today’s MP architectures: Let’s begin by reviewing the four classes of parallel
processors available on the market today.

• Message-passing (MPP), or massively parallel architectures.
• Cluster of workstations.
• Shared memory (SMP).
• Parallel vector (PVP).

1Video © 1996, University Video Communications. This video is available from University Video
Communications, http://www.uvc.com.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 2

MPP architecture
Proc.

Cache

Mem .

Net
intfc.

Proc.

Cache

Mem .

Net
intfc.

Global switch interconnection

…

Here is the structure of a message-passing, or SMP design, also referred to as a
distributed memory system. It consists of a collection of CPU/memory nodes
that are connected by a high-speed interconnection network.

The structure of the individual nodes is similar to a standalone
computer, except that the individual nodes are usually somewhat
smaller, and most are not connected directly to I/O devices.
Generally, the packaging is geared to a large processor count.

Proc.

Cache

Mem .

Examples of this kind of machine include the Intel Paragon, Thinking Machines’
CM-5, and the Cray T3D and T3E.

The strength of MPP systems lies in their scalability. The fact that the nodes are
small, and are connected by a high-speed interconnection network allows these
systems to grow to hundreds or thousands of processors.

The drawback is that programming these systems involves restructuring
applications into a message-passing style, so programmers have to rewrite their
application to explicitly manage all communication.

In addition, performance often suffers, since the overhead of passing a message
is tens to hundreds of μsec., which is tens to thousands of instructions on a
modern microprocessor.

The performance and programming overheads have limited the use of these
machines to a small user base that can justify the effort of recoding their
applications in return for the high aggregate computing power of a large MPP.

Lecture 22 Architecture of Parallel Computers 3

Cluster architecture
Proc.

Cache

Mem .

Proc.

Cache

Mem .

Global switch interconnection

…Net
intfc.I/O Net

intfc. I/O

Clusters address the volume issues of MPPs by replacing the integrated MPP
node with standard workstation or SMP nodes. Some cluster systems are the
IBM SP series, the DEC True Cluster systems, and SGI’s Power Challenge
arrays. These systems are popular because they can leverage the volume of the
individual nodes to hit better price/performance points.

The structure of these machines differs from MPPs in the sense that the
interconnection network connects to the I/O subsystem instead of being
integrated into the memory bus.

Physically these machines are generally not as tightly packaged as an MPP
machine, since the nodes have I/O controllers, disks, etc. Unfortunately the fact
that they are less integrated implies that the overhead of communicating
between the nodes is higher than in an MPP system. Of course, they suffer from
the same programming and message-passing overheads as MPP systems.

SMP architecture
Proc.

Snoopy
cache

Proc.

Snoopy
cache

Proc.

Snoopy
cache

Proc.

Snoopy
cache

Central bus

Mem . I/O

The next class of system, the shared-memory or symmetric multiprocessor, is
quite different from the first two. Generally, SMPs combine a number of
processors and a high-performance bus that provides both high bandwidth and
low latency to central memory and I/O devices.

These systems employ snoopy cache coherence to keep processor utilization
high and reduce bus loading. There are numerous examples of this class of
system, ranging from the high-end SGI Power Challenge, Sun Ultraserver and
DEC Alpha Server to the low-end two- and four-processor PC systems.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 4

The SMPs primary advantage is the shared-memory programming model, which
is a more natural extension to the uniprocessor model than the message-passing
model. Shared memory also permits low-latency interprocessor communication.

Finally, the large central memory and I/O resources in an SMP are directly
accessible to all processes running on the system, unlike the distributed
resources of an MPP or cluster.

PVP architecture

Mem.

Global switch interconnection

Vector
processor

Vector
processor

Mem. Mem.… …

…

The last class of MP system is the parallel vector processor, or PVP. PVPs differ
from the other classes in that they are based on specialized vector processors
instead of high-volume microprocessors.

They are also different in that the vector processors operate directly out of a
high-speed memory without intermediate caches. They can achieve high
throughput by hiding the latency to memory by operating on vectors instead of
individual memory words.

The primary example of this kind of system is Cray’s line of vector machines J90,
C90, and T90.

The high-end vector machines are based on bipolar technology and utilize a very
high performance interconnection to an SRAM main memory. This makes PVPs
unique in that their performance can remain high on codes that cannot use
caches effectively. Unfortunately, they also suffer from high cost and low volume
due to their special-purpose nature.

PVPs do serve an important niche of scientific applications such as
computational fluid dynamics codes that need very high performance, but cannot
utilize caches well.

[20b] The ideal multiprocessor would combine the best of all of these. It would
provide the scalability of MPP systems, the cost economics of cluster-based
systems, the programming model and tight coupling of an SMP, and the floating-
point performance and high memory bandwidth of PVPs.

Lecture 22 Architecture of Parallel Computers 5

A scalable SMP restructures the SMP class to incorporate the advantages of the
other architectures while retaining the programming model and low-latency
communication of the SMP.

In this talk, I will focus on how the SSMP incorporates the functions of the MPP,
cluster, and SMP. Integrating PVP into the SSMP is primarily a question of per-
processor floating-point performance and memory-latency tolerance, together
with the amount of memory spent on the memory system to achieve high
bandwidth.

To understand how an SSMP is built, let’s begin by looking at the structure of the
SMP. Its bus structure is key to both its tight integration and cache coherence,
but is also the inherent limitation on the scalability of the system.

• The cost of the bus itself limits how small a system can effectively be
configured.

• The fixed bandwidth of the bus limits how far the SMP can scale to
support a large number of processors.

The first step in the evolution of an SMP is to remove the bus and replace it with
a switch. The switch removes the bus bottleneck by giving the system scalable
bandwidth that can grow as the system grows.

Switch-based SMP

Switch interconnection

Proc.

Cache

Proc.

Cache

Proc.

Cache

Mem . I/ODir.

Further, the switch can be small when the system is small, and grow as the
system grows.

An additional change is to the means of cache coherence, since the snoopy
schemes used on bus-based SMPs rely on broadcasting every memory
reference to every cache. This is done by adding directories to memory so that
the memory knows which processors hold a copy of a memory block; the
removes the need for broadcasts. We’ll return to directory-based coherence in a
moment.

The overall effect of replacing the bus with a switch is that the bus bottleneck is
removed and the system is much more scalable. We also have increased
modularity, in the sense that the switch structure can grow as the number of
processors grows, in order to provide higher performance.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 6

But we still have not attained the ideal structure, because the switch adds
latency and uses shared bandwidth for memory locations that are accessed only
by a single processor. The next step is to push portions of the memory through
the switch, and distribute the shared memory and I/O with the set of processors.

Distributed shared memory

Global switch interconnection

Proc.

Cache

Proc.

Cache

Mem .Dir.

I/O

Local
sw itch

Proc.

Cache

Proc.

Cache

Mem .Dir.

I/O

Local
sw itch…

With the distributed shared memory, or DSM, structure, memory and I/O that has
an affinity to a set of processors can be accessed with lower latency and does
not use the shared bandwidth of the global interconnection.

Memory bandwidth increases naturally as processors are added. Moreover,
modularity is greatly increased, because each node is a complete functioning
unit, and an entry system need not have a global switch at all.

DSM systems are also referred to as NUMA, or non-uniform memory access,
machines. This is in contrast to traditional bus-based SMP or switch-based PVP
systems, where all memory is equidistant, and there is a uniform memory
access, or UMA.

NUMA systems that support caching of local and remote memory are referred to
as CC-NUMA, for cache-coherent NUMA. The DSM, or CC-NUMA, system has
the same basic structure, and thus scalability, as the MPP or workstation cluster.
The primary difference is that the memory is accessible to all processors directly.

Furthermore, I/O can be accessed directly by each processor, and I/O devices
can DMA directly into any portion of memory, as in an SMP. All that is changed
from an SMP is that the memory and I/O resources have been distributed along
with the processors.

Let’s look at the structure of a simple directory scheme. A directory is organized
as an array of state information that supplements each bank of data memory.

Lecture 22 Architecture of Parallel Computers 7

Mem .Dir.

State Presence b i ts Data b lock
(cache-l ine

size)

……

Directory Memory

Each memory block, which is a cache-line sized block of memory, typically 32 to
128 bytes, has an associated directory entry.

This added state information contains—

• state bits, that indicate whether the particular block is cached, and, if
cached, whether in a shared read-only state, or an exclusive read-
only state, and

• pointer information, which indicates which processors have this block
cached. In this example, the pointer information is stored as a bit-
vector with each bit representing one processor.

Let’s look at how the directory maintains coherence in a system with eight
processors.

Load to cached/unshared block: Assume processor 0 starts by doing a load
from memory on another node.

• The processor finds that it does not have the data already in its
cache, and issues a request for a shared copy of the memory block.

• This request travels to the appropriate memory, based on its
address, accesses the memory location and directory, and
determines that the line is either uncached, or cached only for
reading by other processors.

• The memory returns a copy of the memory block, and updates the
directory to indicate that the line is now shared, and that processor 0
has a shared copy.

• Other processors can also read this block, updating their sharing or
presence bit in the directory as well.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 8

Global switch interconnection

P0 P1

Mem .Dir.

I/O

P6

Cache

P7

Cache

Mem .Dir.

I/O…

Unc. 00000000

State Presence bits

Shrd. 10000000

State Presence bits

Cache Cache

Local
sw itch

Local
sw itch

Store to shared block: Now assume that processor 7 does a store to the
memory location.

• This generates a read-exclusive command that is sent to the memory.
• The memory receives this command, and uses the information in the

directory to determine that the line is shared, and which processors
are sharing the line.

• The memory then sends invalidation requests to those processors and
only those processors, and returns the line to the writing processor.

• The directory transitions to the dirty state, indicating
that processor 7 has the only up-to-date copy of the
memory block.

Excl. 00000001

State Presence bits

• The invalidate messages also generate acknowledgments to the
writing processor, so that it can determine when all stale copies have
been eliminated.

• Now that the writing processor has exclusive ownership, it can read
and write the block in its cache without further memory transactions.

Load to dirty block: Upon a subsequent read by another processor, however, the
reading processor sends its request to memory, and the directory indicates that
an exclusive copy is held by the writing processor, and that memory is not up to
date.

This read request is then sent on to the writing processor‘s cache. The dirty
cache returns the data to the reading processor, and sends a copy of the data to
update memory and return the directory to the sharing state.

We’ve now returned to the original shared state before Shrd. 10000000

State Presence bits

Lecture 22 Architecture of Parallel Computers 9

processor 7’s write.

Write-back and removal from cache: The other possibility is that the writing
processor replaces the dirty line in its cache by issuing a write-back request to
memory.

This message indicates that the dirty cache is removing its exclusive copy and
updating the data memory, leaving the directory in the uncached state.

Importance of directories:

• Only processors that access a memory block are involved with coherence
for that block.

 Thus, the overhead of cache coherence is never more than a fraction of
the traffic required to access the given memory block if it were never
cached at all.

• Memories only communicate with processors, never with one another.
 Thus, bandwidth to global cache-coherent memory can be scaled with

directories by simply adding additional memory banks, or, in DSM
systems, by adding additional nodes to the system.

[20c] Scaling the SMP model. The directory structure was originally proposed
by L. Censier and P. Feautrier in 1978.

1980s: Commercial cache-coherence schemes were based on snoopy cache
coherence because snoopy schemes were simpler and placed the burden of
coherence on the caches themselves.

Late 1980s: Directory-based cache coherence attracted renewed interest in
academia when the inherent bottlenecks of bus-based SMP systems began to
be felt.

Many universities began programs to investigate scalable systems.

Another early effort at a directory-protocol implementation was taken on by the
IEEE Scalable Coherence Interface Working Group. This group defined an
interface standard for modules that includes a directory-based cache-coherence
scheme that could be used to build up SSMP systems out of nodes conforming
to the SCI standard.

1991: IEEE Scalable Coherent Interface standard.

The earliest commercial DSM systems were the Kendall Square Research KSR-
1, introduced in 1991, and the Convex Exemplar SPP-1000, introduced in 1993.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 10

These early machines were not very successful, with KSR folding, and Convex
struggling financially and eventually being acquired by Hewlett-Packard.

The limited acceptance of these early DSM machines was due to improved bus
technology that yielded bus-based SMP machines with more than 1 GB/s. of
memory bandwidth, and to the fact that high-performance switches could only be
built from expensive bipolar or gallium-arsenide technology at this time.

Today, the need for higher performance and greater scalability has driven much
interest in DSM systems. Technology improvements and commodity CMOS
have also made such systems much more cost effective.

Some of the announced second-generation DSM systems include—

• SGIs Origin servers
• Sequent’s NUMA-cube systems, and
• Data General’s NUMA-Q line.
• Convex, in conjunction with HP, has announced their second major

generation of Exemplar DSM systems, the X class.

Other products are rumored to be in the works from other major computer
vendors.

The performance characteristics of a DSM system can greatly affect its usability.

 DSM ?= scalable SMP?

• DSM structure similar to that of distributed memory. Only difference
is means of accessing interconnection network and remote memory.

• Difference is support for SMP programming model. In SMP,
accesses to remote nodes are supported by hardware.

• Effectiveness depends on latency and bandwidth to remote memory.

If a system can achieve high bandwidth and low latency to all memory, then it
can function as an SMP.

If latency is very high, or bandwidth is very low, then use of remote memory
needs to be carefully controlled by the user. The system functions more as a
distributed-memory system with a shared-memory communication system than a
scalable SMP.

Let’s take a closer look at the importance of remote-memory bandwidth and
latency.

Lecture 22 Architecture of Parallel Computers 11

If one assumes that the processor is stalled on cache misses and waiting for
memory 25% of the time, then one can calculate its relative efficiency when
accessing remote memory, which has greater latency than local memory.

Plotting relative efficiency, based on the ratio of local references, one sees that if
remote-memory access times are kept within 1 1/2 to 3 times local, then even
when all references are remote, efficiency is still 2/3 of when all references are
local.

If locality can be increased to 50% or better, then efficiency is 80% or better.

By contrast, if remote accesses cost 5–10 times more than local, then locality
must be kept very high, or performance falls off dramatically. (It is about 30% if
100% remote references and remote references take 10 times as long as local.
It is about 40% under those assumptions if 50% of references are local.)

With a large ratio, the programmer must take great care to keep locality high and
manage all references to remote memory.

Thus, this kind of system cannot be programmed as an SMP, where memory
placement is irrelevant and only cache reuse is important.

Likewise, looking at remote bandwidth, if there is only a fraction of local
bandwidth available to remote memory, then queueing delays can increase
latency and hold down efficiency when remote memory is accessed.

For example, if one assumes local memory is kept 40% occupied if all
references were local, then if remote bandwidth is a fraction of local, then
utilization of memory will be higher than if all references were local.

Ideally, remote bandwidth equals local, and memory utilization is unchanged by
locality. But, in many systems, remote bandwidth is less than half of local, and
possibly even lower than 1/8. The effect can be to drive memory utilization very
high, or even into saturation. If saturation is reached, then scalability will
obviously be limited. Even near-saturation conditions will raise memory latency
considerably.

A DSM system can’t claim to scale the SMP model unless such effects are
minimized and remote-memory bandwidth is kept near local.

I/O bandwidth: As with memory, scaling the SMP model requires that remote-I/O
bandwidth is kept high. Furthermore, large central-bus SMP systems provide an
attachment point for very high-performance I/O devices that are often not very
well supported in workstation-class systems. Examples include high-
performance networking, such as HIPPI; disk connectivity, such as Fibre
Channel; and high-end graphics, such as SGI’s Infinite Reality.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 12

To function as an SMP replacement, DSM systems must include such high-
performance attachment points, and must have sufficient system bandwidth to
support these devices. Simply having a larger number of lower-performance
interconnections cannot always replace the large I/O pipes found on today’s
SMPs.

[20d] SGI’s Origin: Now I’d like to turn to SGI’s Origin supercomputers. Design
work on the Origin began in late 1993. Systems first shipped in September
1996.

The Origin line ranges from inexpensive uniprocessor desk-sized servers to
multirack supercomputers with 128 or more processors, all based on the same
chip set and S2MP architecture.

The roots of the design lie in both SGI’s previous SMP system, the Power
Challenge, and the DASH project from Stanford. The Power Challenge set the
bar of performance against which Origin was measured, while the experience on
DASH provided the basis for many of the initial design directions of S2MP.

Among the design goals were—

• Follow on to Power Challenge SMP. There had to be a smooth transition
that would not force customers to recode existing applications to S2MP’s
CC-NUMA architecture. This implied that latencies and bandwidth to
remote memory had to be very aggressive.

• Scalability to many CPUs. Power Challenge could have up to 36
processors.

• Cost effectively scale up and down. Also needed to scale down more
effectively than Power Challenge’s 256-bit-wide bus.

• Continued I/O, graphics leadership.
• “Pay as you grow” modularity.

Here is a block diagram of the Origin system, which can scale from 1 to as many
as 1024 MIPS R10000 processors.

Lecture 22 Architecture of Parallel Computers 13

Distributed switch interconnection

Mem .Dir.

I/O

Mem .Dir.

I/O…
512

nodes

L2 cache L2 cache L2 cache L2 cache

R10K R10K R10K R10K

Hub Hub

Each node within Origin is based on a highly integrated hub chip. It supports
interfaces to two R10000 processors, up to 4 GB of synchronous DRAM, a pair
of high-speed XIO links to the I/O subsystem, and a pair of links to the high-
speed global interconnection network, or “Cray link.”

These interfaces are connected by an internal 64-bit crossbar, which can support
up to 3.1 GB/s. of memory and I/O traffic.

Processor and I/O interfaces, along with the memory directory controllers within
the hub of the system, communicate with via messages to implement the CC-
NUMA protocol. The network interface adds the required information to route
the hub internal messages across the global interconnection.

The Cray link interconnect is implemented on a pair of unidirectional 20-bit links
that run at 390 MHz, supplying a peak data-transfer rate of 780 MB/s. in each
direction. These links run both within a single module and between modules
over cables up to 5 m. in length.

The routing network is based on a 6-ported Spider routing chip developed at
SGI. Systems up to 64 processors are built by interconnecting hubs and routers
in a hypercube topology.

With four-processor systems, hubs are
directly connected. Beyond this, two hubs are
connected to each router. The hubs are then
configured into hypercubes of increasing
dimension. Attaching two nodes to each
router is referred to as “double bristling.” It is
a tradeoff between reducing cost and
decreasing latency, vs. per-node system
bandwidth.

At the 64-processor level, all ports of the
router are used, and going beyond this

R R

R R

R R

R R

H
PP

H P
P

H P
PHP

P

HP
P

HP
P

H P
P

H P
P

HP
P

H
PP

H
P P

H
P P

H
P P
H
P P

H
P P

H
P P

H
P P

32 processors

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 14

requires another level of interconnection.

This extension is the second level of hypercubes, placed in parallel to form a “fat
hypercube” topology that can grow to a 5D hypercube of 32-processor local
cubes and interconnect up to 1024 processors.

XIO crossbar I/O subsystem: The XIO system uses the same high-speed
physical interconnection as Cray link, but in a much more limited application, in
the sense that there is a single level of crossbar, connecting up to six XIO cards
to a pair of nodes. An XIO card can be native to XIO, for the maximum
bandwidth of 1.6 GB/s., but more commonly, device interfaces connect to a PCI
bus, which is bridged to an XIO link. Generally, the PCI bus is embedded on the
XIO card, which implements a multiported unit of I/O expandibility.

Hub 0

Hub 1

Graphics/
video

XBOW
I/O sw itch

High-performance
netw orking

PCI
bridge

PCI
bridge

PCI
bridge

External
VME slots

Fast ENET
ATM

HIPPI

Fibre
Channel

UltraSCSI

Internal
PCI slots

The effect is that I/O is added to the system not one PCI card at a time, but an
entire PCI bus at a time. For low-volume and legacy devices, there is also
support for standard internal PCI cards and bridges to external VME card cages.

Modular system packaging: A single Origin module includes—

• 1 to 4 nodes (8 CPUs).
• 12 XIO slots.
• 2 XBOW switches.
• 2 router switches.
• 5 UltraSCSI disk drives.

The packaging allows the system to scale down to a cost-effective uniprocessor
desk-size system, as well as to scale up with multiple 8-processor modules to a
supercomputer-size system.

[20e] Design issues: The design was driven by our overriding goal to provide a
truly scalable shared-memory design. This meant the ability to support small
systems, as well as very large systems, and to grow incrementally.

Support of large systems also required us to address system reliability.

Lecture 22 Architecture of Parallel Computers 15

Design issues include—
• Processor and system interface.
• Node structure and size.
• Interconnection topology.
• Locality optimizations—to increase locality of reference.
• Directory structure.
• Coherence-protocol optimizations.
• System-availability features.

One requirement of any parallel system is that the processor be both high
performance and highly integrated.

Processor design considerations:
• High-performance processors needed. Due to sections of limited

parallelism and Amdahl’s law, few parallel systems will outperform a
uniprocessor if the processors in the parallel system are significantly less
powerful.

• Large shared address space. In Origin, up to 1 TB (240) of physical
memory is addressable from each processor. This requires a large virtual
address space, larger than 232.

• Multiple outstanding memory operations. The dynamic pipeline allows a
high degree of parallelism in the memory subsystem. The caches of the
R10000 are non-blocking, and generate up to four outstanding reads to
the memory system. Further, the hub can also process up to eight
concurrent write operations, for a total of up to 12 transactions per
processor.

 These multiple transactions both increase processor efficiency, by
reducing the impact of memory latency, and increase throughput of
algorithms that have limited cache reuse.

 In Origin, these are especially important, since these references are how
processor-to-processor communication takes place.

Non-blocking cache operations:

Cache miss

Line returned f rom memory

65 + 10 + 65 = 140 cycles

10 + 65 = 75 cycles

Sequential cache miss

Parallel cache miss

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 16

Integrated node structure: The next tradeoff was the structure and size of DSM
nodes. Each node is tied together by a single hub chip that provides multiple
interfaces, each capable of moving data at 780 MB/s.

The node design is primarily a tradeoff in the number of processors supported
per node. The smaller nodes used in Origin provide a very tight coupling
between the processors and the local and remote memory. With small nodes,
local memory latency is comparable to the most integrated uniprocessor designs,
since both only have a single chip between the processor and the memory itself.
The small node size also allows a lower-cost entry point.

Larger nodes permit a tighter coupling of processors within a node, which can
decrease communication costs between the processors within the node. Also, it
can potentially reduce the overhead of the node interface to the global
interconnection.

In Origin, we push for the single-chip design to reduce access time for both local
and remote memory. The single chip also permits a cost-effective crossbar
within the hub chip. This is important, because it permits local processors to
access remote memory without interfering with remote processors accessing the
local memory.

Dir. Mem.

R10K

R10K

XIO

Crossbar

Dir. Mem.

R10K

R10K

XIO

Crossbar

Hub 0 Hub 1

An alternative scheme, used on a number of systems, including DASH, is to add
a DSM-interface card to an existing small-scale bus-based system.

The problem with this type of design is illustrated by the following graphic.

Proc.
&

cache

Mem.
Dir. &

net info

Proc.
&

cache
…

Proc.
&

cache

Mem.
Dir. &

net info

Proc.
&

cache
…

Lecture 22 Architecture of Parallel Computers 17

• In order to access remote memory, the bus must be traversed three
times. This adds considerable latency.

• Assuming all processors are accessing remote memory, there are
conflicts on the bus passing local data to remote processors while
also passing remote data to local processors.

 Since remote accesses require multiple bus transactions, remote
bandwidth will be reduced by a factor of 2 to 3. This can lead to a
large disparity between local and remote memory-access times.

Cray link interconnection design: Goal of interconnection is to provide low
latency, high bandwidth, and scalable performance and cost.

One important metric is bisection bandwidth, or the bandwidth across the center
of the interconnection. Generally, for uniform data accesses, bisection
bandwidth is akin to an SMP bus.

Interconnections vary from bus structures, to unidimensional ring structures,
through 2D and 3D mesh structures, to hypercubes.

Early large parallel machines predominantly employed hypercube architectures;
however, work done by Bill Dally and Chuck Seitz created a thrust toward lower-
dimensional networks. One of the key findings from Dally’s 1990 IEEETC paper
is that for an equal number of wires, the lower-dimensional networks permitted
larger, wider links. This reduces the time to receive a message, and makes up
for the larger number of switches that must be traversed.

Looking in more detail at the parameters used in the study, the time to receive a
message once it reaches its destination usually dominates the latency.

However, in Origin, we started with the most aggressive link and router design
we could implement, and then studied what topologies would give the best
performance. Given that the links are 16 bits wide, and that the latency of a
router is 20 times the period of a word, the effective message size is very small,
0.8 words, falling out of the latency equation (instead of 150 words estimated by
Dally).

With this new parameter, the latency curve vs. message dimension shows that
latency is always reduced by increasing the dimension of the network.

Implementing a hypercube with 16-bit links for up to 512 nodes was not feasible,
since it would imply support for 10 links/router, which was too many pins for
Origin’s technology. This is why Origin employs a hierarchical fat hypercube
structure. In this structure, the bisection characteristics of the hypercube are
maintained, with the only penalty being the two additional switch latencies to
traverse the added hierarchy.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 18

In larger systems, beyond 128 nodes, the simple star structure at the top level
becomes a 3-, 4-, or up to 5D hypercube. This supports up to 1024 processors.
The fat hypercube has latency that is proportional to the log of the number of
nodes in the system, and its bisection bandwidth grows linearly with the number
of nodes.

For large systems, the latency is slightly higher than a pure hypercube, but much
lower than for a 2D-mesh design that could be built with the same router chip,
especially above 256 processors (larger than 8 8 mesh).

Also note that unloaded local latencies are 320 ns. The closest remote memory
is 500 ns. away, and latency grows ≈ 100 ns. every time the system size is
doubled. Thus, Origin keeps the ratio of remote to local latency at 2 or 3 to 1,
and is below 4 to 1 even for the largest 1024-processor system.

Also, the hypercube network also has bisection bandwidth that grows linearly,
not by the square root or cube root, as would be the case in a 2D or 3D mesh.

[20f] While minimizing latency is important, achieving higher performance on a
DSM system than an SMP system relies on having a good fraction of the
references satisfied by local memory. This can be aided if the OS allocates
memory to processes on the same processor that they are running on. For
single-threaded jobs, this is fairly easy. For parallel jobs, it is not clear which
processor will reference the given memory location the most.

Block-transfer engine instead of cluster cache: Many DSM systems implement a
3rd-level node or cluster cache to help improve locality automatically in
hardware. Such a cache can reduce the number of capacity misses that must
be satisfied by remote memory; however, they do not help communication
misses, and are subject to conflict misses themselves. In this case, the cluster
cache has a negative effect on remote bandwidth and latency.

Since the cluster cache must be large, it is made of DRAM. Using a cluster
cache implies that misses result in three DRAM accesses:

1. to determine that the block is not in the local cluster cache,
2. to fetch the block from its home memory, and
3. to allocate the data into the local cluster cache.

Proc.
&

cache

Proc.
&

cache
…

Proc.
&

cache

Dir. &
net info

Proc.
&

cache
…

Mem. &
cluster
cache

Mem. &
cluster
cache

Dir. &
net info

1

2

3

Lecture 22 Architecture of Parallel Computers 19

This will obviously impact latency.

Origin does not use a cluster cache, and instead relies on page migration to
improve locality.

• Page migration is assisted by hardware that keeps 64 reference counts on
each 4K page of memory.

• On every access to memory, the count of the accessing node is
incremented and compared with the home node.

• If the count is higher than a given programmable threshold, the hardware
interrupts one of the local processors.

 This counting function does not affect the bandwidth of the data memory;
it is implemented in the directory memory.

Within the hub, there’s also support for a block-transfer engine, or BTE, per
processor, which can copy the page at near the memory-bandwidth limit.

The BTE allows migration without polluting the cache of either the local or
remote processor.

Furthermore, the read operations of the BTE actually “poison” the source page,
so that subsequent accesses by other processors receive a bus error.

This error is recoverable, and is used to implement a “lazy TLB shootdown”
algorithm, which reduces the overall cost of migrating memory and changing the
virtual-to-physical address mappings.

Similarly to a cluster cache, the BTE scheme used in Origin can help optimize
locality. It has the added advantage that it does not increase latency or
decrease bandwidth to remote memory.

The only downside is that it does not react as quickly as the cluster cache to
changes in locality. But this effect is reduced by the filtering of references by the
processor caches.

Directory organization: The structure of the directory can become a scalability
limit in systems using a simple bit-vector scheme. This is because length of the
bit-vector grows by the square of the processor count. (The amount of memory
grows linearly with the number of processors, and the width of the bit-vector also
grows with the number of processors.)

In order to minimize this overhead, the directory entries have two formats.

• The smaller 16-bit width of directory memory supports systems up to
16 nodes, or 32 processors.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 20

• The other, extended directory adds 32 bits to the base directory to
create 48-bit-wide directory entries. In addition, the directory is
implemented in two sequential memory locations, so the effective width
of the directory status information, bit-vector pointers, and ECC, is either
32 or 96 bits (compared with 1152 bits for the data block plus ECC).

In either format, the directory pointers are either a binary pointer to the exact
dirty processor or I/O cache, or a bit-vector specifying which nodes have the
block cached in the shared state.

Directory formats for ≤ 128 processors (≤ 64 nodes):

State Binary pointer

 Memory block exclusive
 3-bit state + 6-bit binary pointer — standard
 + 11-bit binary pointer — extended

State Bit-vector

 Memory block shared
 3-bit state + 16-bit vector — standard
 + 64-bit vector — extended

Coarse directory format (for > 128 processors):

For systems with larger than 64 nodes, an additional coarse directory format is
used. The coarse format is only needed when more than one-eighth, or octant,
is caching a line.

When the line is only cached within an octant, the binary octant field, together
with the 64-bit bit-vector, fully specifies which processors are caching a block.

If a memory location is cached in more than one octant, the bit-vector is
interpreted as a coarse bit-vector, where each bit represents eight nodes.

State Binary pointer

 Memory block exclusive
 3-bit state + 11-bit binary pointer

State Octant Bit-vector

 Memory block shared in 1 octant (≤ 128 processors)

Lecture 22 Architecture of Parallel Computers 21

 3-bit state + 3-bit octant + 64-bit vector

State Coarse bit-vector

 Memory block shared in > 1 octant
 3-bit state + 64-bit coarse vector

Thus, with the coarse bit-vector format, we can cover the sharing case where all
1024 processors are caching a given memory block. We only need to resort to
the inefficiencies of the coarse format when we have a > 128-processor system,
and a memory block is shared by processors that are not in the same octant.

Overall, while the directory overhead in Origin is high, it is robust—meaning that
it does not have access patterns that result in severe performance degradation—
and because the directory-memory overheads, including the migration counts,
are still reasonable, being less than 6% in small systems and less than 17% in
large systems.

[20g] Coherence-protocol optimizations: The DASH coherence protocol was
used, but it has been optimized in several ways, to reduce latency and maximize
bandwidth for uniprocessor and parallel workloads.

The first enhancement is support for the clean exclusive (CEX) cache state, in
addition to the normal invalid, shared, and dirty states.

The CEX state is used when data is returned from memory for a read request,
but is currently uncached by any other processor (as would be the case for
normal uniprocessor data). The data is returned exclusively to the processor,
which can store directly to that location, without having to reference memory
again to obtain exclusive ownership.

In contrast, without CEX support, a processor would first obtain a shared copy
for the read request, and then have to re-access memory to obtain exclusive
ownership.

The second enhancement is support within the coherence protocol for
processors dropping CEX or shared data from their cache without updating the
directory. This enhancement maximizes memory bandwidth, especially in the
uniprocessor case, because no memory transactions are required simply to
update the directory. All accesses are simple reads and write-backs used to
obtain data.

If directory updates are required, then every cache replacement requires two
directory accesses, and memory bandwidth could be reduced by up to a factor of
two.

© 2015 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Fall 2016 22

There are other enhancements to enhance multiprocessor communication,
similar to those used in DASH.

In particular, there is support for request forwarding. For reads of data held dirty
in another processor’s cache, this implies that the memory forwards the read
request to the dirty cache.

This cache responds by sending the dirty data to the requesting processor in
parallel with sending the sharing write-back to memory.

Likewise, upon a read-exclusive request to satisfy a store by the processor, there
is a requirement to eliminate the other cached copies. Forwarding in this case
implies that memory sends invalidations to the sharing processors, and they
return invalidate-acknowledgments directly to the running processor.

In both the read and read-exclusive case, forwarding reduces serialization by
one system message, reducing latency by 25%.

Availability features: Another important aspect of the design of a large system is
support for high reliability.

• Modularity and redundancy are basis for high availability.
• All SRAM and SDRAM covered by SEC/DED ECC.
• Highly integrated VLSI with controlled operating temperature.
• All high-speed links covered by CRC and include link-level error

detection and HW retransmission.
• Cray link interconnection for multiple paths between modules and hot

plug capability.

Control of sharing.

• Large-scale machines require protection from OS panics.
• Internal registers and I/O devices protected by 64-bit access-control

registers.
• Each 4KB page protected by similar vectors.

The thrust of the work on IRIX, SGI’s Unix clone, is to improve its scalability and
make its virtual-memory manager and scheduler NUMA-aware.

Benchmark results: From Stream benchmarks, which carry out stride-one vector
operations over memory, and the benchmark allows each processor to access its
local memory. Origin outperforms the competition.

Lecture 22 Architecture of Parallel Computers 23

On this benchmark, though, even cluster-based systems scale, since the
benchmark allows processors to reference their local memory. On benchmarks
that require running out of remote memory, Origin shows only a 12% degradation
when memory placement is uncontrolled.

Origin functions as a truly scalable SMP.

Conclusion: This work has shown that the SMP programming model can be
made to scale to large processor counts with high performance. The two key
techniques are directory-based cache coherence and scalable interconnection
networks. These allow SMP model to stretch to design space previously only
covered by parallel vector processors. It can also scale down to more common
smaller configurations.

Lecture 24 Architecture of Parallel Computers 1

Protocol Races
[§10.4] We have assumed—

Directory state reflects the most up-to-date state of caches.
Messages due to a request are processed atomically.

In reality, one of or both conditions may be violated

Protocol races can occur
Some protocol races can be handled in a simple way; others
are trickier.

We will discuss how protocol races can be handled.

Purpose of discussion: illustrate approaches for dealing with
protocol races.
Discussing all possible races is not the goal.

Handling races: out-of-sync directory
[§10.4.1] Suppose the home sends an invalidation to a node that has
replaced the block silently.

The node can reply with
Suppose that the home receives a read request from a node that is
already a sharer from the home point of view.

The directory can reply with data
Suppose that the home receives a read/write request from a node
that the home thinks is the owner.

(In the directory, what state is this block in?)

What might have happened to the block?
o If the block was clean,
o If the block was dirty,

What should the home do? (Why will neither of these work?)

o Wait?

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

o Reply with data?

The directory alone cannot resolve this. Coherence controllers
at other nodes must participate in the solution.

What does the coherence controller at a node n need to do
when a flush or writeback occurs?

o Maintain an outstanding transaction buffer (OTB) for flush
messages.

o Require the home to acknowledge the receipt of a flush

These two steps allow node n to delay a Read/ReadX request
to a block that is still being written back.

Hence, the home only receives Read/ReadX to a block that is
not being written back.

o When it does, it can send a

Protocol modification
Here is a modified state-transition diagram.

What is the meaning of “owner” in a directory protocol?

Lecture 24 Architecture of Parallel Computers 3

The meaning of “owner” is ambiguous here …

because the directory may be out of sync with cache states,

the directory may get a Read or ReadX from a node it thinks is
the owner (but actually isn’t).

(This isn’t permitted by the protocol.)

What do we do about it?

Split EM into two states (EMA and EMB) to reflect this situation.
EMA means the directory thinks the current owner is A.
EMB means the directory thinks the current owner is B.

Transitions from state U
Suppose the block is in state U in the directory.

What happens on a ReadX request?
o The system fetches the block from the local memory,

sends a ReplyD to the Requester, and moves to state

What happens on a Read request?
o The system

o What state does the requesting cache transition to?

o What state does the directory transition to?

Transitions from state S
Suppose the directory state is S.

What happens on a Read request?
o The directory knows it has a valid block in the local

memory.
o It sends a to the Requester and updates the

sharing vector.
o Directory state

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

What happens on a ReadX request?
o Directory sends to the Requester.
o Directory sends to all (other) sharers.
o State changes to
o But, if it’s an upgrade, it just

Transitions from state EM
Suppose WLOG the directory state is EMA.
Suppose a Read request (from a different node B) is received.

The state is set to

An is sent to the owner (A) to change its
state to

Suppose a ReadX request (from a different node B) is received.

Directory sends an invalidation message to

This message also says to send the data to

Directory sends a reply message to B, saying that will supply
the data.

State transitions to

(Note that it doesn’t matter whether owner is in state E or M.)

Suppose the directory has an out-of-sync view of cache states, and is
in state EMA.

Suppose it receives a Read or ReadX from A.
o This means A’s block must’ve been replaced due to a

cache miss.

The directory knows that A is really the owner.

Thus, it can just respond with

Lecture 24 Architecture of Parallel Computers 5

Handling races: non-atomic messages

1. [§10.4.2] A sends a read request to home.
2. Home replies with data (but the message gets delayed).
3. B sends a write request to home.
4. Home sends invalidation to A, and it arrives before the ReplyD

Why is this a problem?

This is called an “early invalidation” race.

How should A respond to the invalidation?

Two incorrect ways to respond:

A replies with InvAck.
o B thinks that its write propagation is complete
o A receives a ReplyD and places the block in its cache

(the block that should have been invalidated).

A ignores the invalidation message
o The message is lost; write propagation has failed to occur

Solution:
Brute force (avoids overlapped handling of requests):

o Home waits until it receives ack from all parties (home-
centric)

Allow overlapping but ask nodes to participate (requester-
assisted)

o Node keeps an OTB

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

o It does not entertain requests (to the same block) until the
current transaction is completed

Exercise: Explain how each of these scenarios would play out using
the four-step diagram above.

Processing a Read Request
Case 1: Read to clean block

Home-centric approach

Directory enters a
transient state.
Home replies with data
Requester receives
data, sends ack to
home.
Home closes
transaction (transitions
to a stable state, update
sharing vector).

Cons: too much serialization at home, transaction closed late, and
it requires ack

Requester-assisted approach
Directory sends ReplyD, then closes transaction
Requester buffers/nacks all new requests until ReplyD received
(i.e., till the current Read transaction is completed)

Lecture 24 Architecture of Parallel Computers 7

Case 2: Read to block in EM state

Home-centric approach

Requester sends Read to home
Home enters a transient state, sends intervention to owner
Owner flushes block to home and requester
Requester sends ack back to home
Home closes transaction (transitions to shared state, updates
sharing vector)

Requester-assisted approach

Requester sends Read to home
Home enters a transient state, sends intervention to owner
Home cannot close the transaction yet, because in the final
state (Shared), it must have a clean copy of the block
Owner flushes block to home and requester
Upon receiving the block from owner, home closes transaction

Processing a write (ReadX) request
We will cover this in the next class.

Write Propagation and Serialization
[§10.4.3] In a directory-based protocol,

Write propagation is achieved through invalidation.

Multiple writes to a block are serialized by the protocol.
o Transaction closes after the ack from current owner is

received by home.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 8

o A new ReadX request is not served until the previous ReadX
request is closed.

o This provides write serialization

Here is a diagram of serializing writes by A, B, and C.

Is it using the home-centric or requester-assisted scheme?

Memory consistency models
[§10.4.5] Implementing sequential consistency:

All memory accesses by a processor must be issued and completed
in program order.

Which of the two (issuing or completion) is hardest to assure?

Write completion detected when all InvAcks are collected
When does read completion occur?

Prefetching and load speculation can be used.

As the number of processors grows,
Average latency of a cache miss increases
Harder to hide it
What does this do to the viability of SC?

Lecture 24 Architecture of Parallel Computers 1

Handling races: non-atomic messages (cont.)
Last time, we saw how to deal with read requests when another
message (e.g., an invalidation) arrived while the read was being
processed.

Now we want to consider what happens when a write request arrives.

Case 1: ReadX to a block in state U

Home-centric approach

Requester sends ReadX request
Home responds with data
Requester sends Ack
Home closes transaction.

Requester-assisted approach

Requester sends ReadX request
Home sends

Case 2: ReadX to block
in state S
Home-centric approach

Requester sends
ReadX request
Home enters
transient state and sends Inv msgs.
InvAcks must be

o collected at Requester, which notifies Home, or
o collected at Home

Home closes transaction
Requester-assisted approach

Requester sends ReadX request to home.
Home sends Invs and closes the transaction
InvAcks collected __________

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 2

Case 3: ReadX to EM block
Home-centric approach

Requester sends
ReadX request to home
Home enters transient
state and sends Inv message.
InvAck must be

o awaited at Requester, which notifies home, or
o awaited at Home.

Owner flushes block to home and requester.
Upon receiving the block from owner, home closes transaction

Requester-assisted approach

Requester sends ReadX request to home.
Home sends Inv message to owner and closes transaction.
Owner flushes block to requester.
Requester buffers/NACKs new requests

Case 4: ReadX to EM block with data race

Is this different from Case 3 for home-centric approach?

For the requester-assisted approach?

What if the current owner no longer has the block?
o Either it had it in state M and
o or it had it in state E and

Home cannot close the transaction yet, as it may have to
supply the block.
Hence, it can close the transaction late, after it receives Ack
from the owner.

Lecture 24 Architecture of Parallel Computers 3

Dealing with Imprecise Directory Information

[§10.5.1] Why does directory information get stale over time?

Why isn’t the directory always notified?

What problems does stale directory information cause?

1. Increased trouble (power consumption, latency) in locating a
block

2. Storage overhead
3. Extra blocks invalidated when directory gets full
4. Increase in invalidation traffic

Let’s consider these in order.
Problem 1 is caused by three evictions. After the evictions, list the
tags of the directory entries that are incorrect.
When a core C1 wants to fetch C, it hedges because the directory
info might be incorrect.

 If the directory info is correct, where should it get the data from?

 If the directory info is incorrect, where should it go for the data?

 Which choice has the least latency?

 Which choice takes the least power?

 Which steps in the diagram illustrate the hazard (in terms of
power and/or latency) in making the wrong choice?

 A “compromise” is to look in both places. Is this better from the
standpoint of latency and/or power?

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 4

Problem 2 (storage overhead) is caused by unneeded directory
entries occupying space in the directory. Which directory entries
above are unneeded at the end of Step 9?

Problem 3 is illustrated by which steps in the above diagram?

How can it cause an unnecessary cache miss?

Problem 4 is higher invalidation traffic. But why might traffic not be
higher when stale directory entries are allowed?

Solihin suggests two antidotes.

 Aggregating notification messages on clean-block purges.

Lecture 24 Architecture of Parallel Computers 5

 Predicting when directory blocks are invalid, based on # of
cache misses from a particular LLC.

Accelerating thread migration
Ordinarily, a directory keeps track of which processor has cached a
copy of a block.
If a thread moves from one processor to another, it will suffer a lot of
cold misses.
What are the steps in servicing such a miss?

 P3 references block A, but A is not in its cache (C3).
 So P3 consults the directory, and finds that the block is cached

in C1.
 It sends a request to C1, which responds by sending a ReplyD

to the requester, C3.

Is there a way to avoid repeated references to the directory for each
cache block that needs to move?

Solihin suggests adding a level of indirection to the directory.

© 2023 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2023 6

 Instead of saying the block is cached in C1, it would say that it’s
cached in

 Initially, V1 is set to point to , because that’s where the
block is cached.

 When the thread migrates to a new processor, the OS adds the
new processor’s cache to

 This effectively says that any block cached in C1 can also be
cached in

 When a miss occurs, the corresponding line in C1 is consulted,
and transfers the block.

o This saves message per miss.

