

Lecture 9 Architecture of Parallel Computers 1

Parallel access to linked data structures

[Solihin Ch. 4] Answer the questions below.

Name some linked data structures.

What operations can be performed on all of these structures?

Why is it hard to parallelize these operations?

Explain how the following code illustrates such a dependence.

void addValue(pIntList pList, int key, int x) {

 pIntListNode p = pList->head;

 while (p != NULL) {

 if (p->key == key)

 S1: p->data = p->data + x;

 S2: p = p->next;

 }

}

In the notation introduced in Lecture 5, how would the dependence
be written?

If we just look at the loops in an “LDS” program, we won’t find any
parallelism to be exploited.

So, where can we find the opportunity to execute anything in parallel?

Conceptually, we can allow several operations to be performed in
parallel. What kind of operations?

But how do we decide which operations can be performed in parallel?

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfO9bOJbGb7zSiBzrVC_4j39SyPybHOZ1yzjrCspMutwQ57GA/viewform

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

Correctness of parallel LDS operations

Serializability: A parallel execution of a group of operations (or
primitives) is said to be serializable if there is some sequence of
operations (or primitives) that produce an identical result.

Suppose a node insertion i1 and a node deletion d1 are performed in
parallel. The outcome must be equivalent to either

Conflict between two insertions

Let’s look at
the simple
case of a
singly-linked
list.

Suppose
two items
are inserted
in parallel:
insert both 4
and 5.

Serializable
outcomes:

In any case,

must be in
the list at the
end of
execution

What could happen if the operations are not parallelized correctly?

Conflict between an insertion and a deletion

Lecture 9 Architecture of Parallel Computers 3

Serializable
outcome:

in both
cases, at the
end of
execution,
node 4 is in
the list, but
node 5 is not
in the list

In the case shown, node 4 is lost. What would be a sequence that
produces another incorrect result? What would happen with this
sequence? (You may use this worksheet.)

Conflict between an insertion and a search

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSd8kA-hcDF_fwv3Q4X-ZtCGPUtN2RLr7jOiEvJhkUaxDPlUaw/viewform
http://www.csc2.ncsu.edu/faculty/efg/506/s20/www/lectures/lec8_worksheet.doc
http://www.csc2.ncsu.edu/faculty/efg/506/s20/www/lectures/lec8_worksheet.pdf

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

Suppose we
attempt

insert 5, then
search 6

or search 6,
then insert 5

in both
cases, at the
end of
execution,

• 5 must be
in the list,
and

• 6 must be
found

Depending on when the insertion code is executed,

• node 6 will be found, or

• node 6 may not be found, and an uninitialized link may be
followed.

Conflict between a deletion and a search

• Deletion and search

o delete 5, then search for 5
o search for 5, then delete 5

• Possible outcomes

o Node 5 may be found or not found
o Node 5 is deleted from the list

Lecture 9 Architecture of Parallel Computers 5

What, if anything, is the problem with these outcomes?
Nothing;

Main Observations

• Parallel execution of two operations that affect a common node,
in which at least one operation involves writing to the node, can
produce conflicts that lead to non-serializable outcome.

• Under some circumstances, a serializable outcome may still be
achieved, despite the conflicts mentioned above.

• Conflicts can also occur between LDS operations and memory-
management functions such as allocation and deallocation.

Parallelization strategies

• Parallelization among readers

o Very simple
o Works well if structure is modified infrequently

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6

• Global lock approach

o Relatively simple
o Parallel traversal, followed by sequential list modifications

• Fine-grain lock approach

o A lock is associated with each node.
o Each operation locks only nodes that need to be

accessed exclusively.
o Complex: Deadlock can occur; memory allocation and

deallocation become more complex

Parallelization among readers

• Basic idea

o (Read-only) operations that do not modify the list can
execute in parallel.

o (Write) operations that modify the list execute sequentially

• How to enforce

o A read-only operation acquires a read lock
o A write operation acquires a write lock

• Construct a lock-compatibility table

Already-granted
lock

Read lock
requested

Write lock
requested

Read lock Yes No

Write lock No No

Example

IntListNode_Search(int x)

{

 acq_read_lock();

 …
 …
 …
 rel_read_lock();

}

IntListNode_Insert(node *p)

{

 acq_write_lock();

 …
 …
 …
 rel_write_lock();

}

Lecture 9 Architecture of Parallel Computers 7

Global-lock approach

• Each operation logically has two steps

o Traversal

▪ Node insertion: Find the correct location for the node
▪ Node deletion: Find the node to delete
▪ Node search: Find the sought-for node

o List modification

• Basic idea: perform the traversal in parallel, but modify the list
in a critical section,

• Pitfall
o The list may have changed by the time the write-lock is

acquired,
o so the assumptions must be re-validated.

Example

IntListNode_Insert(node *p)

{

 …
 /* perform traversal */

 …
 acq_write_lock();

 /* then check validity:

 nodes still there?

 link still valid? */

 /* if not valid, repeat traversal */

 /* if valid, modify list */

 …
 rel_write_lock();

}

Fine-grain locking approach

• Associate each node with a lock (read, write).

• Each operation locks only needed nodes.

• (Read and write) operations execute in parallel except when
they conflict on some nodes. Fill in the blanks below.

o Nodes that will be modified are .

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfgSOtURKnXgm_VhmNd0Z7Lt5PqVFs-GIRb1zmELn0MyzOpsg/viewform

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 8

o Nodes that are read and must remain unchanged are
 .

• Pitfall: Deadlock becomes possible.
o Suppose one operation locks node 1 and then needs to

lock node 2, while another operation locks node 2 and
then needs to lock node 1.

o Then neither operation can complete before the other
operation frees the lock it is holding.

• Deadlocks can be prevented by imposing a
 .

Example

void insert(pIntList pList, int x){

 int succeed;

 … /* traversal code to find where to insert */

 /* insert the node at head or between prev & p */

 succeed = 0;

 do {

 acq_write_lock(prev);

 acq_read_lock(p);

 if (prev->next != p || prev->deleted || p->deleted)
 {

 rel_write_lock(prev);

 rel_read_lock(p);

 … /* repeat traversal */
 }

 else

 succeed = 1;

 } while (!succeed);

 /* prev and p are now valid, so insert node */

 newNode->next = p;

 if (prev != NULL)

 prev->next = newNode;

 else

 pList->head = newNode;

 rel_write_lock(prev);

 rel_read_lock(p);

Lecture 9 Architecture of Parallel Computers 9

}

Questions

What do the tests prev->deleted and p->deleted mean?

Why is garbage collection used, rather than explicit deletion?

The delete operation is similar; code that is the same is shown in
green.

void delete(pIntList pList, int x){

 int succeed;

 … /* traversal code to find node to delete */

 /* node has been found; perform the deletion */

 succeed = 0;

 do {

 acq_write_lock(prev);

 acq_write_lock(p);

 if (prev->next != p || prev->deleted || p->deleted)
 {

 rel_write_lock(prev);

 rel_write_lock(p);

 … /* repeat traversal; return if not found */
 }

 else

 succeed = 1;

 } while (!succeed);

 /* prev and p are now valid, so delete node */

 if (prev == NULL) { /* delete head node */

 acq_write_lock(pList);

 pList->head = p->next;

 rel_write_lock(pList);

 }

 else /* delete non-head node */

 prev->next = p->next;

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScvZV0qbftpa2xLGDAwIVawyquDEJhtG07Cw2WBiw1d5_37Eg/viewform
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScvZV0qbftpa2xLGDAwIVawyquDEJhtG07Cw2WBiw1d5_37Eg/viewform

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 10

 p->deleted = 1; /*don’t deallocate; mark deleted*/
 rel_write_lock(prev);

 rel_write_lock(p);

}

-

