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Simulating ocean currents 

We will study a parallel application that simulates ocean currents. 
 
Goal: Simulate the motion of water currents in the ocean.  Important 
to climate modeling. 

Motion depends on atmospheric forces, friction with ocean floor, and 
“friction” with ocean walls. 

To predict the state of the ocean at any instant, we need to solve 
complex systems of equations. 

The problem is continuous in both space and time.   
But to solve it, we discretize it over both dimensions. 

Every important variable, e.g., 

• pressure • velocity • currents 

has a value at each grid point. 

This model uses a set of 2D horizontal cross-sections through the 
ocean basin. 

Equations of motion are solved at all the grid points in one time-step. 

(a) Cross sections  
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• The state of the variables is updated, based on this solution. 

• The equations of motion are solved for the next time-step. 

Tasks 

The first step is to divide the work into tasks. 

• A task is an arbitrarily defined portion of work. 

• It is the smallest unit of concurrency that the program can exploit. 

Example:  In the ocean simulation, a task can be computations on— 

• a single grid point,  

• a row of grid points, or  

• any arbitrary subset of the grid. 

Tasks are chosen to match some natural granularity in the work. 

• If the grain is small, the decomposition is called   . 

• If it is large, the decomposition is called    . 

Threads 

A thread is an abstract entity that performs tasks. 

• A program is composed of cooperating threads. 

• Each thread is assigned to a processor. 

• Threads need not correspond 1-to-1 with processors! 

Example:  In the ocean simulation, an equal number of rows may be 
assigned to each thread. 

Four steps in parallelizing a program: 

• Decomposition of the computation into tasks. 

• Assignment of tasks to threads. 

• Orchestration of the necessary data access, communication, 
and synchronization among threads. 

• Mapping of threads to processors. 



 

Lecture 7 Architecture of Parallel Computers 3 

 

Together, decomposition and assignment are called partitioning. 

They break up the computation into tasks to be divided among 
threads. 

The number of tasks available at a time is an upper bound on the 
achievable parallelism. 

Table 2.1 Steps in the Parallelization Process and Their Goals

Step
Architecture-
Dependent? Major Performance Goals

Decomposition Mostly no Expose enough concurrency but not too much

Assignment Mostly no Balance workload

Reduce communication volume

Orchestration Yes Reduce noninherent communication via data 

locality

Reduce communication and synchronization cost 

as seen by the processor

Reduce serialization at shared resources

Schedule tasks to satisfy dependences early

Mapping Yes Put related processes on the same processor if 

necessary

Exploit locality in network topology
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Parallelization of an Example Program 

[§2.3]  In this lecture, we will consider a parallelization of the kernel of 
the Ocean application. 

The serial program 

The equation solver solves a PDE on a grid. 

It operates on a regular 2D grid of (n+2) by (n+2) elements. 

• The boundary elements in the border rows and columns do not 
change. 

• The interior n-by-n points are updated, starting from their initial 
values. 

 

A [ i,j ] = 0.2    ( A [ i,j ] +  A [ i,j –  1] +  A [ i –  1 ,  j ] + 

A [ i,j  + 1] +  A [ i  + 1,  j ]) 

Expr ession for updating each interior point: 

 

• The old value at each point is replaced by the weighted 
average of itself and its 4 nearest-neighbor points. 

• Updates are done from left to right, top to bottom. 

° The update computation for a point sees the new values of 
points above and to the left, and 

° the old values of points below and to the right. 

 This form of update is called the Gauss-Seidel method. 

During each sweep, the solver computes how much each element 
has changed since the last sweep. 
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• If this difference is less than a “tolerance” parameter, the 
solution has converged. 

• If so, we exit solver; if not, we do another sweep. 

Here is the code for the solver. 

 
Decomposition 

A simple way to identify concurrency is to look at loop iterations. 

Is there much concurrency in this example?  Does the algorithm let 
us perform more than one sweep concurrently?  
 

Note that— 

• Computation proceeds from left to right and top to bottom. 

1.  int n;            /*size of matrix: (n + 2-by-n + 2) elements*/ 

2.  double **A, diff = 0; 

 

3.  main() 

4.  begin 

5.   read(n) ;           /*read input parameter: matrix size*/ 

6.   A  malloc (a 2-d array of size n + 2 by n + 2 doubles); 

7.   initialize(A);        /*initialize the matrix A somehow*/  

8.   Solve (A);         /*call the routine to solve equation*/ 

9.  end main 

 

10. procedure Solve (A)       /*solve the equation system*/ 

11.  double **A;          /*A is an (n + 2)-by-(n + 2) array*/ 

12. begin 

13.  int i, j, done = 0; 

14.  float diff = 0, temp; 

15.  while (!done) do       /*outermost loop over sweeps*/ 

16.   diff = 0;          /*initialize maximum difference to 0*/ 

17.   for i  1 to n do     /*sweep over nonborder points of grid*/ 

18.    for j  1 to n do 

19.     temp = A[i,j];     /*save old value of element*/ 

20.     A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 

21.      A[i,j+1] + A[i+1,j]); /*compute average*/ 

22.     diff += abs(A[i,j] - temp);      

23.    end for 

24.   end for 

25.   if (diff/(n*n) < TOL) then done = 1;         

26.  end while 

27. end procedure 
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• Thus, to compute a point, we use  

° the updated values from the point above and the point to the 
left, but 

° the “old” values of the point itself and its neighbors below 
and to the right. 

Here is a diagram that illustrates the dependences. 

 

The horizontal and vertical 
lines with arrows indicate 
dependences. 

The dashed lines along the 
antidiagonal connect points 
with no dependences that can 
be computed in parallel. 

Of the O(   ) work in each 

sweep,  concurrency propor-
tional to          along 
antidiagonals. 

How could we exploit this parallelism? 

• We can leave loop structure alone and let loops run in parallel, 
inserting synchronization ops to make sure a value is computed 
before it is used. 

Why isn’t this a good idea?   
 

• We can change the loop structure, making 

° the outer for loop (line 17) iterate over anti-diagonals, and 

° the inner for loop (line 18) iterate over elements within an 
antidiagonal. 

Why isn’t this a good idea?  
 
 
 

https://docs.google.com/forms/d/e/1FAIpQLSdO-O2wHF7_aKN-eBscyz3WngwtqsuVesQreFjkWtboGZwPKQ/viewform?usp=sf_link
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSePT_MTqX7MVi_UV78_jP1XpxF77WTsIy3RrQlkyq5gn7pwiA/viewform
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The Gauss-Seidel algorithm doesn’t require us to update the points 
from left to right and top to bottom. 

It is just a convenient way to program on a uniprocessor. 

We can compute the points in another order, as long as we use 
updated values frequently enough (if we don’t, the solution will 
converge, but more slowly). 

Red-black ordering 

Let’s divide the points into alternating “red” and “black” points: 

 

Red point 

Black point 

 

To compute a red point, we don’t need the updated value of any other 
red point.  But we need the updated values of 2 black points. 

And similarly for computing black points. 

Thus, we can divide each sweep into two phases. 

• First we compute all red points. 
• Then we compute all black points. 

True, we don’t use any updated black values in computing red points. 

But we use all updated red values in computing black points. 

Whether this converges more slowly or faster than the original 
ordering depends on the problem. 
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But it does have important advantages for parallelism. 

• How many red points can be computed in parallel?   
 

• How many black points can be computed in parallel?   
 

Red-black ordering is effective, but it doesn’t produce code that can 
fit on a single display screen. 

A simpler decomposition 

Another ordering that is simpler but still works reasonably well is just 
to ignore dependences between grid points within a sweep. 

A sweep just updates points based on their nearest neighbors, 
regardless of whether the neighbors have been updated yet. 

Global synchronization is still used between sweeps, however. 

Now execution is no longer deterministic. 

The number of sweeps needed, and the results, may depend on the 
number of processors used. 

But for most reasonable assignments of processors, the number of 
sweeps will not vary much. 

Let’s look at the code for this. 

 

15. while (!done) do       /*a sequential loop*/ 
16.  diff = 0;        

17.  for_all i  1 to n do    /*a parallel loop nest*/ 

18.   for_all j  1 to n do 

19.    temp = A[i,j];     

20.    A[i,j]  0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 

21.     A[i,j+1] + A[i+1,j]);      

22.    diff += abs(A[i,j] - temp);      

23.   end for_all 

24.  end for_all 

25.  if (diff/(n*n) < TOL) then done = 1;         

26. end while 
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The only difference is that for has been replaced by for_all. 

A for_all just tells the system that all iterations can be executed in 
parallel. 

With for_all in both loops, all n2 iterations of the nested loop can be 
executed in parallel. 

We could write the program so that the computation of one row of 
grid points must be assigned to a single processor.  How would we 
do this?   

With each row assigned to a different processor, each task has to 
access about 2n grid points that were computed by other processors; 
meanwhile, it computes n grid points itself. 

So the communication-to-computation ratio is O(1). 

Assignment 

How can we statically assign elements to processes? 

• One option is “block 
assignment”—Row i is 

assigned to process i / p. 

p
0

p
1

p
2

p
3

 

• Another option is “cyclic assignment—Process i is assigned 
rows i, i+p, i+2p, etc. 

• Another option is 2D contiguous block partitioning. 

We could instead use dynamic assignment, where a process gets an 
index, works on the row, then gets a new index, etc.  Is there any 
advantage to this?   
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What are advantages and disadvantages of these partitionings? 

Static assignment of rows to processes reduces concurrency  
 

But block assignment reduces communication, by assigning adjacent 
rows to the same processor. 

How many rows now need to be accessed from other processors?   
 

So the communication-to-computation ratio is now only O(  ). 

Orchestration 

Once we move on to the orchestration phase, the computation model 
affects our decisions. 

Data-parallel model 

In the code below, we assume that global declarations are used for 
shared data, and that any data declared within a procedure is private. 

Global data is allocated with g_malloc. 

Differences from sequential program: 

• for_all loops 
• decomp statement 
• mydiff variable, private to each process 
• reduce statement 

https://docs.google.com/forms/d/e/1FAIpQLSfVtjcCndl0QfEHMkGxus4_Ik_u5gagA_tv2S1hj-WwXt_7aA/viewform?usp=sf_link
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The decomp statement has a twofold purpose. 

• It specifies the assignment of iterations to processes. 

 The first dimension (rows) is partitioned into nprocs contiguous 
blocks.  The second dimension is not partitioned at all. 

 Specifying [CYCLIC, *, nprocs] would have caused a 

cyclic partitioning of rows among nprocs processes. 

 Specifying [*,CYCLIC, nprocs] would have caused a  

cyclic partitioning of columns among nprocs processes. 

1.  int n,  nprocs ; /*grid size (n+2n+2) and # of processes*/ 
2.  double **A, diff = 0; 

3.  main() 
4. begin 
5.  read(n); read( nprocs ); ;  /*read input grid size and # of processes*/ 
6.   A     G_MALLOC  (a 2-d array of size n+2 by n+2 doubles); 
7.  initialize(A); /*initialize the matrix A somehow*/ 
8.  Solve (A); /*call the routine to solve equation*/ 
9.  end main 

10. procedure Solve(A) /*solve the equation system*/ 
11.  double **A;    /* A is an (n+2n+2) array*/ 
12.  begin 
13. int i, j, done = 0; 
14. float  mydiff  = 0, temp; 
14a. DECOMP A[BLOCK,*, nprocs]; 
15. while (!done) do /*outermost loop over sweeps*/ 
16. mydiff  = 0;   /*initialize maximum difference to 0 */ 
17. for_all  i    1 to n do /*sweep over non-border points of grid*/ 
18. for_all  j    1 to n do 
19. temp = A[i,j]; /*save old value of element*/ 
20. A[i,j]    0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21. A[i,j+1] + A[i+1,j]); /* compute average*/ 
22. mydiff += abs(A[i,j] - temp); 
23. end for_all 
24. end for_all 
24a. REDUCE (mydiff, diff, ADD); 
25. if (diff/(n*n) < TOL) then done = 1; 
26. end while 
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 Specifying [BLOCK, BLOCK, nprocs] would have implied a 

2D contiguous block partitioning. 

• It specifies the assignment of grid data to memories on a 
distributed-memory machine.  (Follows the owner-computes 
rule.) 

The mydiff variable allows local sums to be computed. 

The reduce statement tells the system to add together all the mydiff 
variables into the shared diff variable. 

Shared-memory model 

In this model, we 
need mechanisms to 
create processes and 
manage them. 

After we create the 
processes, they 
interact as shown on 
the right. 

 

Sweep

Test Convergence

Processes

Solve Solve Solve Solve
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What are the main differences between the serial program and this 
program? 

• The first process creates nprocs–1 worker processes.  All n 
processes execute Solve. 

 All processes execute the same code. 

 But all do not execute the same instructions at the same time. 

• Private variables like mymin and mymax are used to control 
loop bounds. 

• All processors need to— 

1.  int n,  nprocs; 
  /*matrix dimension and number of processors to be used*/ 

2a. double**A, diff; /*A is global (shared) array representing the grid*/ 
/*diff is global (shared) maximum difference in current 
sweep*
/ 2b. LOCKDE C(diff_lock); /*declaration of lock to enforce mutual exclusion*/ 

2c. BARDEC (bar1); /*barrier declaration for global synchronization between 
sweeps*
/ 

3.  main() 
4.  begin 
5.  read(n); read( nprocs ); /*read input matrix size and number of processes */ 
6.  A   

  G_MALLOC  (a two-dimensional array of size n+2 by n+2 doubles); 
7.  initialize(A); 

  /*initialize A in an unspecified way*/ 
8a. CREATE (nprocs–1, Solve, A); 
8. Solve(A); /*main process becomes a worker 

too*/ 8b.  WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/ 
9.  end main 

10.  procedure Solve(A) 
11.  double**A; /*A is entire n+2-by-n+2 shared array, 

as in the sequential program*/ 
12. begin 
13. int i,j,  pid , done = 0; 
14. float temp,  mydiff  = 0; 

  /*private variables*/ 
14a. int mymin = 1 + (pid * n/nprocs); /*assume that n is exactly divisible by*/ 
14b. int mymax = mymin + n/nprocs - 1 /*nprocs for simplicity here*/ 

15.  while (!done) do /* outer loop over all diagonal elements*/ 
16.  mydiff 

  =  diff  =   0 ; 
/*set global diff to 0 (okay for all to do it)*/ 

16a. BARRIER(bar1, nprocs); /*ensure all reach here before anyone modifies diff*/ 
17.  for i   

  mymin  to  mymax  do   /*for each of my rows */ 
18.  for j    1 to n do /*for all nonborder elements in that row*/ 
19. temp = A[i,j]; 
20. A[i,j] = 0.2 * (A[i,j] + A[i,j-1] + A[i-1,j] + 
21. A[i,j+1] + A[i+1,j]); 
22. mydiff  += abs(A[i,j] - temp); 
23.  endfor 
24.  e ndfor 
25a. LOCK(diff_lock); /*update global diff if necessary*/ 
25b. diff +=  mydiff ; 
25c. UNLOCK(diff_lock); 
25d. BARRIER(bar1, nprocs); /*ensure all reach here before checking if done*/ 
25e. if (diff/(n*n) < TOL) then done = 1; 

  /*check convergence; all get 
same answer*/ 

25f. BARRIER(bar1, nprocs); 
26. endwhile 
27. end procedure 
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° complete an iteration before any process tests for 

convergence.  Why? 

° test for convergence before any process starts the next 

iteration.  Why? 

 Notice the use of barrier synchronization to achieve this. 

• Locks must be placed around updates to diff, so that no two 
processors update it at once.  Otherwise, inconsistent results 
could ensue. 

 p1 p2 

 r1  diff  { p1 gets 0 in its r1} 

  r1  diff { p2 also gets 0} 

 r1  r1+r2  { p1 sets its r1 to 1} 

  r1  r1+r2 { p2 sets its r1 to 1} 

 diff  r1  { p1 sets diff  to 1} 

  diff  r1 { p2 also sets diff to 1} 

If we allow only one processor at a time to access diff, we can avoid 
this race condition. 

What is one performance problem with using locks?   
 
 

Note that at least some processors need to access diff as a non-local 
variable. 

What is one technique that our shared-memory program uses to 
diminish this problem of serialization?   
 

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfvWxIk61TOy3ZRdJvcCaurxw-a0h6tQmoLF0n9HTNHhX-W3g/viewform
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Message-passing model 

The program for the message-passing model is also similar, but 
again there are several differences. 

• There’s no shared address space, so we can’t declare array A 
to be shared. 

 Instead, each processor holds the rows of A that it is working 
on. 

• The subarrays are of size (n/nprocs + 2)  (n + 2). 
 This allows each subarray to have a copy of the boundary rows 

from neighboring processors.  Why is this done?   
 

 These ghost rows must be copied explicitly, via send and 
receive operations. 

 Note that send is not synchronous; that is, it doesn’t make the 
process wait until a corresponding receive has been executed. 

 What problem would occur if it did?   
 
 

• Since the rows are copied and then not updated by the 
processors they have been copied from, the boundary values 
are more out-of-date than they are in the sequential version of 
the program. 

 This may or may not cause more sweeps to be needed for 
convergence. 

• The indexes used to reference variables are local indexes, not 
the “real” indexes that would be used if array A were a single 
shared array. 

 

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScYp_d-GQI3mqWbRc1BBxy6_OcPUmh3IHGyhiD9abYLCrEEwg/viewform
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1. int pid, n, b;        /*process id, matrix dimension and number of  

              processors to be used*/ 
2. float **myA; 

3. main()  

4. begin 

5.   read(n);   read(nprocs);  /*read input matrix size and number of processes*/ 
8a.   CREATE (nprocs-1, Solve); 

8b.   Solve();        /*main process becomes a worker too*/ 

8c.   WAIT_FOR_END (nprocs–1); /*wait for all child processes created to terminate*/ 
9. end main 

 
10. procedure Solve() 

11. begin  
13.  int i,j, pid, n’ = n/nprocs, done = 0; 

14.  float temp, tempdiff, mydiff = 0;  /*private variables*/ 

6.  myA  malloc(a 2-d array of size [n/nprocs + 2] by n+2); 

              /*my assigned rows of A*/ 

7. initialize(myA);        /*initialize my rows of A, in an unspecified way*/ 

 
15. while (!done) do 

16.   mydiff = 0;       /*set local diff to 0*/  
16a.  if (pid != 0) then SEND(&myA[1,0],n*sizeof(float),pid-1,ROW); 

16b.  if (pid != nprocs-1) then 

    SEND(&myA[n’,0],n*sizeof(float),pid+1,ROW); 

16c.  if (pid != 0) then RECEIVE(&myA[0,0],n*sizeof(float),pid-1,ROW); 

16d.  if (pid != nprocs-1) then  

    RECEIVE(&myA[n’+1,0],n*sizeof(float), pid+1,ROW); 

              /*border rows of neighbors have now been copied 

              into myA[0,*] and myA[n’+1,*]*/ 

17.   for i  1 to n’ do    /*for each of my (nonghost) rows*/  

18.    for j  1 to n do   /*for all nonborder elements in that row*/ 
19.    temp = myA[i,j];     

20.    myA[i,j] = 0.2 * (myA[i,j] + myA[i,j-1] + myA[i-1,j] + 

21.     myA[i,j+1] + myA[i+1,j]);      

22.    mydiff += abs(myA[i,j] - temp);      

23.    endfor 

24.   endfor 

              /*communicate local diff values and determine if 

              done; can be replaced by reduction and broadcast*/ 

25a.   if (pid != 0) then      /*process 0 holds global total diff*/ 
25b.    SEND(mydiff,sizeof(float),0,DIFF);  

25c.    RECEIVE(done,sizeof(int),0,DONE);  

25d.   else            /*pid 0 does this*/ 

25e.    for i  1 to nprocs-1 do  /*for each other process*/  
25f.     RECEIVE(tempdiff,sizeof(float),*,DIFF);  

25g.     mydiff += tempdiff;     /*accumulate into total*/ 
25h.    endfor  

25i   if (mydiff/(n*n) < TOL) then   done = 1; 

25j.    for i  1 to nprocs-1 do  /*for each other process*/  
25k.     SEND(done,sizeof(int),i,DONE);  

25l.    endfor 

25m.  endif 

26. endwhile 

27. end procedure 


