

Lecture 6 Architecture of Parallel Computers 1

Privatization

Privatization means making private copies of a shared variable.

What is the advantage of privatization?

Of the three kinds of variables in the table above, which kind(s) does it
make sense to privatize?

Under what conditions is a variable privatizable?

• If it is always defined (=written) in program order by a task before
use (=read) by the same task (Case 1).

• If its values in different parallel tasks are known ahead of time,
allowing private copies to be initialized to the known values (Case
2).

When a variable is privatized, one private copy is made for each thread
(not each task).

Result of privatization: R/W conflicting → R/W non-conflicting

Let’s revisit the examples.

Example 1

With each for i
iteration a separate
task, which of the
R/W conflicting
variables are privatizable?

Which case does each such variable fall into?

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];

 S3: b[i][j] = a[i][j-1] * d[i][j];

 }

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfbX_UQD0oNm-5UdB8ivkOIiheVRWMvYv6kfZlrGnhGxQekJg/viewform

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

We can think of privatized variables as arrays, indexed by process ID:

Example 2

Parallel tasks: each for j loop iteration.

Is the R/W conflicting variable j privatizable? If so, which case does it
represent?

Reduction

Reduction is another way to remove conflicts. It is based on partial
sums.

Suppose we have a large matrix, and need to
perform some operation on all of the elements—
let’s say, a sum of products—to produce a single
result.

We could have a single processor undertake this,
but this is slow and does not make good use of the
parallel machine.

So, we divide the matrix into portions, and have one processor work on
each portion.

Then after the partial sums are complete, they are combined into a
global sum. Thus, the array has been “reduced” to a single element.

Examples:

• addition (+), multiplication (*)

• Logical (and, or, …)

The reduction variable is the scalar variable that is the result of a
reduction operation.

Criteria for reducibility:

Lecture 6 Architecture of Parallel Computers 3

• Reduction variable is updated by each task, and the order of
update .

• Hence, the reduction operation must be
 .

Goal: Compute

y = y_init op x1 op x2 op x3 … op xn

op is a reduction operator if it is commutative

 u op v = v op u

and associative

(u op v) op w = u op (v op w)

Summary of scope criteria

Should be
declared private

Should be
declared shared

Should be de-
clared reduction

Non-privatizable
R/W conflicting

Example 1

with for i parallel
tasks

Fill in the answers
here.

Read-only R/W non-conflicting R/W conflicting

Declare as shared Declare as private

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];

 S3: b[i][j] = a[i][j-1] * d[i][j];

 }

https://docs.google.com/forms/d/e/1FAIpQLSdzOXuQ77sa2JIAHeyWfns28VBUpqG9qHULdBdnliy-EHmaQA/viewform?usp=sf_link

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

Example 2

with for j parallel tasks

Fill in the answers here.

Read-only R/W non-conflicting R/W conflicting

Declare as shared Declare as private

Example 3

Consider matrix
multiplication.

Exercise:
Suppose the
parallel tasks are for k iterations. Determine which variables are
conflicting, which should be declared as private, and which need to be
protected against concurrent access by using a critical section.

Read-only R/W non-conflicting R/W conflicting

Declare as shared Declare as private

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S1: a[i][j] = b[i][j] + c[i][j];

 S2: b[i][j] = a[i-1][j] * d[i][j];

 S3: e[i][j] = a[i][j];

 }

for (i=0; i<n; i++)

 for (j=0; j<n; j++) {

 C[i][j] = 0.0;

 for (k=0; k<n; k++) {

 C[i][j] = C[i][j] + A[i][k]*B[k][j];

 }

 }

}

https://docs.google.com/forms/d/e/1FAIpQLScC0iO_snBP9-xDwnkwOWUFVOzBcd1UMH2LFJ_w5hqb64h7Rw/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSdj5inN2HHLCqgaMnoqSDCXwj59xbEF7NKkWCVBhmdfdTi1pg/viewform?usp=sf_link

Lecture 6 Architecture of Parallel Computers 5

Which variables, if any, need to be protected by a critical section?

Now, suppose the parallel tasks are for i iterations. Determine which
variables are conflicting, which should be declared as private, and
which need to be protected against concurrent access by using a
critical section.

Read-only R/W non-conflicting R/W conflicting

Declare as shared Declare as private

Which variables, if any, need to be protected by a critical section?

Synchronization

Synchronization is how programmers control the sequence of
operations that are performed by parallel threads.

Three types of synchronization are in widespread use.

• Point-to-point:

o a pair of post() and wait()

o a pair of send() and recv() in message passing

• Lock

o a pair of lock() and unlock()

o only one thread is allowed to be in a locked region at a
given time

o ensures mutual exclusion

o used, for example, to serialize accesses to R/W concurrent
variables.

https://docs.google.com/forms/d/e/1FAIpQLSfC_VCZPzwUVvzj-apHqmcgHGIc_Fr6ayu2hDvS_yglPIT41A/viewform?usp=sf_link
https://docs.google.com/forms/d/e/1FAIpQLSfC_VCZPzwUVvzj-apHqmcgHGIc_Fr6ayu2hDvS_yglPIT41A/viewform?usp=sf_link

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6

• Barrier

o a point past which a thread is allowed to proceed only when
all threads have reached that point.

Lock

What problem may arise here?

A lock prevents more than one thread from being inside the locked
region.

Issues:

• What granularity to lock?

• How to build a lock that is correct and fast.

// inside a parallel region

for (i=start_iter; i<end_iter; i++)

 sum = sum + a[i];

// inside a parallel region

for (i=start_iter; i<end_iter; i++) {

 lock(x);

 sum = sum + a[i];

 unlock(x);

}

Lecture 6 Architecture of Parallel Computers 7

Barrier: Global event synchronization

A barrier is used when the code that follows requires that all threads
have gotten to this point. Example: Simulation that works in terms of
timesteps.

Load balance is important.

Execution time is dependent on the slowest thread.

This is one reason for gang scheduling and avoiding time sharing and
context switching.

