Finding parallel tasks across iterations

[§3.2.2] Analyze loop-carried dependences:

e Dependences must be enforced (especially true dependences;
other dependences can be removed by privatization)

e There are opportunities for parallelism when some dependences
are not present.

Example 1

for (i=2; i<=n; i++)

S: ali] = al[i-2]1;
LDG:
We can divide the loop into two parallel for (i=2; i<=n; 1i+=2)
tasks (one with odd iterations and S: ali]l = ali-2];
another with even iterations): for (i=3; i<=n; 1+=2)
S: al[i] = al[i-2];

Lecture 5 Architecture of Parallel Computers 1

Example 2

for (i=0; i<n; i++)
for (j=0; j< n; Jj++)
S3: alil[j] = ali]llj-1] + 1;
LDG
]

1 2

O
Y
("):,

How many parallel tasks are there here?

Example 3

for (i=1; i<=n; i++)
for (j=1; j<=n; j++)
ali

Sl: il [J)l =ali][J-1] +alil[j+1] +ali-1]1[]J] +ali+1][J];
i
LDG
1 2 n
1 >)— >
Note: each
edge represents
2 both true, and
anti-dependences
Identify which n (O >

nodes are not
dependent on each other

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

In each anti-diagonal, the nodes are independent of each other

1 2. n
1
Note: each
edge represents
both true, and
i 2 anti-dependences

We need to rewrite the code to iterate over anti-diagonals:

Calculate number of anti-diagonals
for each anti-diagonal do
Calculate the number of points in the current anti-diagonal
for_all points in the current anti-diagonal do
Compute the value of the current point in the matrix

Parallelize the loops highlighted above.

for (i=1; 1 <= 2*n-1; i++) {// 2n-1 anti-diagonals
if (1 <= n) {

points = 1i; // number of points in anti-diag
row = ij; // first pt (row,col) in anti-diag
col = 1; // note that row+col = i+l always
}
else {
points = 2*n - 1i;
row = n;
col = i-n+1; // note that rowtcol = i+l always

}
for all (k=1; k <= points; k++) {

alrow] [col] = .. // update al[row] [col]
row—-; col++;

Lecture 5 Architecture of Parallel Computers 3

DOACROSS Parallelism
[§3.2.3] Suppose we have this code:

_Can we e>;ecute anything for (iol; i<—N: i+4) |
in parallel’ S: a[i] = al[i-1] + b[i] * c[i];
}

Well, we can’t run the iterations of the £for loop in parallel, because ...
S[i] »T s[i+1] (There is a loop-carried dependence.)
But, notice thatthe b[i] *c[i] part has no loop-carried dependence.

This suggests breaking up the loop into two:

for (i=1; i<=N; i++) { The first Ioop is ||izable.
S1: temp[i] = b[i] * c[i]; The second is not.

}
for (i=1; i<=N; i++) {

S2: ali] = al[i-1] + templ[i];)]
} What is a disadvantage of

this approach?

Execution time: Nx(Ts1+Ts2)

Here’s how to solve this problem:

. parallel parallel parallel
post (O) !)) task 1 task 2 task 3
for (lzl; 1<=N; 1i++) { (i=1) (i=2) (i=3)
Sl: temp = b[i] * c[i];
wait (i-1); st SI SI
S2: a[i] = a[i-1] + temp; <o ;
post (1) ; posi(1) - - - Wait(l)
i s2 :
))) pOst(2) - -w VAI2)
What is the execution time now? Ts; + SI
NxTs2

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

Function parallelism
e [§3.2.4] Identify dependences in a loop body.

¢ |f there are independent statements, can split/distribute the loops.

Example:
for (1-0; i<n; itt) Loop-carried dependences:
Sl: a[i] = b[i+1] * a[i-1];
S2: b[i] = b[i] * coef; _
S3: c[i] = 0.5 * (c[i] + a[i]); | Loop-indep. dependences:
S4: d[i] = d[i-1] * d[i];
}

Note that S4 has no dependences with other statements

After loop distribution:

for (i=0; i<n; i++) { Each loop is a parallel task.
S1: a[i] = b[i+1] * al[i-1];
S2: b[i] = b[i] * coef; This is called function
S3: c[i] = 0.5 * (c[i] + al[il); parallelism.

}

. . . It can be distinguished from
for jiammi o b data parallelism, which we
} st dli] = dii=di] = didy saw in DOALL and

DOACROSS.

Further transformations can be performed (see p. 44 of text).

“S1[i] —>A S2[i+1]” implies that S2 at iteration i+1 must be
executed after S1 at iteration i. Hence, the dependence is not violated
if all S2s execute after all S1s.

Characteristics of function parallelism:
[J

Can use function parallelism along with data parallelism when data
parallelism is limited.

Lecture 5 Architecture of Parallel Computers 5

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSeJV9uDV25lLnREAHG2OK13Bnx26UT8FBXooRZT2gfPrstv4w/viewform

DOPIPE Parallelism

[§3.2.5] Another strategy for loop-carried dependences is pipelining the
statements in the loop.

Consider this situation: for (i=2; i<=N; i++) {
Loop-carried dependences: 2; im _ ii]_li ;[ki][l]’
}

Loop-indep. dependences:

To parallelize, we just need to make sure the two statements are
executed in sync:

parallel parallel
for (i=2; 1i<=N; i++) { task 1 task 2
ali] = al[i-11 + b[i]; .
post(i);
} S1 post(1)
T - -~ _ o j-‘ﬂit(])
for (i=2; i<=N; 1i++) S post(2)
wait (i) ; —— :3 wait(2)
c[i] = c[i1] + al[i]; 5 T
} — S2
.) . S1 post(n) _:_
Question: What's the difference —L wait(n)
between DOACROSS and T
DOPIPE? S2

Determining variable scope

[§3.4] This step is specific to the shared-memory programming model.
For each variable, we need to decide how it is used. There are three
possibilities:

e Read-only: variable is only read by multiple tasks

¢ R/W non-conflicting: variable is read, written, or both by only one
task

¢ R/W conflicting: variable is written by one task and may be read
by another

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSckf_Yzf5qdNG6_FG76wbDSN42htvXFuJBHTl1T1XI-je9mYw/viewform

Intuitively, why are these cases different?

Example 1
Let for (i=1; i<=n; i++)
o S 8ssumne for (j=1; j<=n; j++) {
each iteration . T . .
) S2: alil (3] = b[i][]J] + cli1[3];
of the for i S3: b[i][3] = alil[3-1]1 * d[i][3];
loop is a)
parallel task.

Fill in the tableaus here.

Read-only R/W non-conflicting R/W conflicting

Now, let’s assume that each for j iteration is a separate task.

Read-only R/W non-conflicting R/W conflicting

Do these two decompositions create the same number of tasks?

Lecture 5 Architecture of Parallel Computers

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSdHMx049j2WZxxKO-lNOLoC3DMXFzBbbHBZS1t2ghzc-4Ysrw/viewform

Example 2

Let’s assume that
each for j iteration is
a separate task.

; 1<=n; 1i++)
for (j=1; j<=n; j++)
Sl: afillJ] = bli]
S2: bli]l 7] ali-
S3: eli]l[3] = alil

Read-only

R/W non-conflicting

R/W conflicting

Exercise: Suppose each for i iteration were a separate task ...

Read-only

R/W non-conflicting

R/W conflicting

© 2022 Edward F. Gehringer

CSC/ECE 506 Lecture Notes, Spring 2022

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSdPjfi185SXMRb7QvQihyYbrclbcSgEo6-n9HyVdD6oFenvLg/viewform

