

Lecture 4 Architecture of Parallel Computers 1

Shared-Memory Parallel
Programming

[§3.1] Solihin identifies several
steps in parallel programming.

The first step is identifying parallel
tasks. Can you give an example?

The next step is identifying
variable scopes. What does this
mean?

The next step is grouping tasks
into threads. What factors need
to be taken into account to do
this?

Then threads must be
synchronized. How have we seen this done in the last lecture?

What considerations are important in mapping threads to processors?

Solihin says that there are three levels of parallelism:

• program level

• algorithm level

• code level

Identifying loop-level parallelism

[§3.2] Goal: given a code, without knowledge of the algorithm, find
parallel tasks.

Focus on loop-dependence analysis.

Notations:

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfX8_wOluYK4W8HCf1PB-BB0DpL6kF7AZd3qOVyC3YVYhbB6Q/viewform

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

• S is a statement in the source code

• S[i, j, …] denotes a statement in the loop iteration [i, j, …]

• “S1 then S2” means that S1 happens before S2

• If S1 then S2:

S1 →T S2 denotes true dependence, i.e., S1 writes to a
location that is read by S2

S1 →A S2 denotes anti-dependence, i.e., S1 reads a
location written by S2

S1 →O S2 denotes output dependence, i.e., S1 writes to the
same location written by S2

Example:

S1: x = 2;
S2: y = x;
S3: y = x + 4;
S4: x = y;

Exercise: Identify the dependences in the above code.

Loop-independent vs. loop-carried dependences

[§3.2] Loop-carried dependence: dependence exists across
iterations; i.e., if the loop is removed, the dependence no longer
exists.

Loop-independent dependence: dependence exists within an
iteration; i.e., if the loop is removed, the dependence still exists.

Example:

https://docs.google.com/forms/d/e/1FAIpQLScJI9DjG0rqOHgzx6A5bpdmSZKBtzN9M8aFdP68wBYayTVRAA/viewform?usp=sf_link

Lecture 4 Architecture of Parallel Computers 3

S1[i] →T S1[i+1]: loop-carried

S1[i] →T S2[i]: loop-

independent

S3[i,j] →T S3[i,j+1]:

• loop-carried on for j

loop

• no loop-carried
dependence in for i

loop

S4[i,j] →T S4[i+1,j]:

• no loop-carried dependence in for j loop

• loop-carried on for i loop

Iteration-space Traversal Graph (ITG)

[§3.2.1] The ITG shows graphically the order of traversal in the
iteration space. This is sometimes called the happens-before
relationship. In an ITG,

• A node represents a point in the iteration space

• A directed edge indicates the next point that will be
encountered after the current point is traversed

Example:

for (i=1; i<n; i++) {

 S1: a[i] = a[i-1] + 1;

 S2: b[i] = a[i];

}

for (i=1; i<n; i++)

 for (j=1; j< n; j++)

 S3: a[i][j] = a[i][j-1] + 1;

for (i=1; i<n; i++)

 for (j=1; j< n; j++)

 S4: a[i][j] = a[i-1][j] + 1;

for (i=1; i<4; i++)

 for (j=1; j<4; j++)

 S3: a[i][j] = a[i][j-1] + 1;

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

Loop-carried Dependence Graph (LDG)

• LDG shows the true/anti/output dependence relationship
graphically.

• A node is a point in the iteration space.

• A directed edge represents the dependence.

Example:

i

j

1

2

3

3 2 1

for (i=1; i<4; i++)

 for (j=1; j<4; j++)

 S3: a[i][j] = a[i][j-1] + 1;

Lecture 4 Architecture of Parallel Computers 5

Another example:

• Draw the ITG

• List all the dependence relationships

Note that there are two “loop nests” in the code.

• The first involves S1.

• The other involves S2 and S3.

What do we know about the ITG for these nested loops?

1

2

3

3 2 1

i

j

T

T

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++)

 S1: a[i][j] = a[i][j-1] + a[i][j+1] + a[i-1][j] + a[i+1][j];

for (i=1; i<=n; i++)

 for (j=1; j<=n; j++) {

 S2: a[i][j] = b[i][j] + c[i][j];

 S3: b[i][j] = a[i][j-1] * d[i][j];

 }

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6

Dependence relationships for Loop Nest 1

• True dependences:

o S1[i,j] →T S1[i,j+1]

o S1[i,j] →T S1[i+1,j]

• Output dependences:

o None

• Anti-dependences:

o S1[i,j] →A S1[i+1,j]

o S1[i,j] →A S1[i,j+1]

Exercise: Suppose we dropped off the first half of S1, so we had

S1: a[i][j] = a[i-1][j] + a[i+1][j];

or the last half, so we had

S1: a[i][j] = a[i][j-1] + a[i][j+1];

Which of the dependences would still exist?

i

1

2

n

n 2 1 . . .

. . .

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScUQnr6EAkRG4DYvu8o8VzZj6WYTUftc_AWUu55r3wLXOoWoA/viewform

Lecture 4 Architecture of Parallel Computers 7

Draw the LDG for Loop Nest 1.

Dependence relationships for Loop Nest 2

• True dependences:

o S2[i,j] →T S3[i,j+1]

• Output dependences:

o None

• Anti-dependences:

o S2[i,j] →A S3[i,j] (loop-independent dependence)

i

j

1

2

n

n 2 1 . . .

. . .

Note: each
edge represents
both true and
anti-dependences

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 8

Draw the LDG for Loop Nest 2.

Why are there no vertical edges in this graph? Answer here.

Why is the anti-dependence not shown on the graph?

Exercise: Consider this code sequence.

for (i = 3; i < n; i++) {

for (j = 0; j < n - 3; j++) {

S1: A[i][j] = A[i - 3][j] + A[i][j + 3];

S2: B[i][j] = A[i][j] / 2;

}

}

List the dependences, and say whether they are loop independent or
loop carried. Then draw the ITG and LDG (you don’t need to submit
these).

i

j

1

2

n

n 2 1 . . .

. . .

Note: each
edge represents
only true dependences

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScXLNX2AVGX9scKuSqY9i09qFzTRFfCp7pu6Og0INDlbakIDQ/viewform
https://docs.google.com/forms/d/e/1FAIpQLSfjh6C6TakpubGUIm9FiGdrQZFwThgdNLNC8M_mZYA3HOSgOA/viewform?usp=sf_link

