

Lecture 25 Architecture of Parallel Computers 1

Routing algorithms

What path does a message travel from its source to its destination?
This is determined by the routing algorithm.

Given a current node and a destination node, the routing algorithm
chooses the next port and channel on which to send out the message.

Thus, a routing algorithm is a function R: N  N  C.

A switch usually uses one of three mechanisms to determine the
output channel from info in the packet header.

• arithmetic,
• source-based port select, and
• a table lookup.

A switch needs to route a packet every few cycles, so it needs to be
fast.

In regular topologies, simple arithmetic suffices.

Example: x, y routing in a grid. (What is x, y routing?)

Finish this example.

West (–x) x < 0
East (+x)
South (–y) x = 0,
North (+y)
Processor x = 0, y = 0

To accomplish this routing, the switch needs to test the address in
the header and increment or decrement one routing field.

Usually, routing is done in dimension order—first across the x-
dimension, then the y-dimension, then the z-dimension (if any), etc.

So in a binary cube, the switch determines the most significant bit
where the destination node number differs from the current node
number.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

Sometimes a packet header has a relative address embedded in it.

Example: If the source node is 001010 and the destination node is
100101, what would be the relative address embedded at the source
node?

In this case, the switch just looks for the first non-zero bit and routes
accordingly.

In general, in a mesh or cube, routing is done by moving from lowest
(x) dimension to the highest.

This is called routing in dimension order. In a hypercube, it is called
e-cube routing. It was used in nCube hypercubes and the Intel
Paragon, among others.

More generally, the source builds a header consisting of the output
port # for each switch along the route.

P0P1P2P3

This is called source-based routing.

Each switch just strips off the port number from the front of the
message and sends it on.

Example: Let’s assume we have a hypercube of dimension n, where
n links are attached to each node. An output-port value of 0 means
move across dimension 0 (i.e., flip the lsb); a value of n–1 means
move across dimension n–1 (i.e., flip the msb).

Assume that n = 6, and that the header specifies these output ports:

 5 2 3 0

If the packet starts out at node 36 (= 1001002), where does it end
up?

Lecture 25 Architecture of Parallel Computers 3

All of the intelligence is at the source node. Arbitrary routing can be
supported without much logic in the switches.

Disadvantage: Header is large, of variable size.

Table-driven routing associates a small routing table at each switch.
It allows for a small fixed-size header.

In table-driven routing,

• The packet header contains a routing field i.

• The output port is R [i], where R is the routing table.

• Usually the table also contains the routing field for the next step
in the route.

Disadvantage: The switch must contain quite a bit of routing state.
Fairly large tables are needed even for simple routing algorithms.

This approach was used by ATM and HPPI switches, but isn’t too
practical for multiprocessors, because of the large number of routing
patterns that they must support.

One important difference between network routers and
multiprocessor switches: Time constraints.

Routing may be—

• Deterministic, where the route is completely determined by the
(source, destination) pair, and not by the intermediate state, or

• Adaptive, where the route is influenced by traffic along the way.

A routing algorithm may be minimal, meaning that it only selects
shortest paths toward the destination (no backtracking), or
nonminimal (can allow longer paths).

Minimal algorithms need not be deterministic. Can you see why?

Similarly, adaptive algorithms may be minimal. 

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

Let’s compare the two types.

 Do nonminimal algorithms have any advantages over minimal
algorithms?

 Do minimal algorithms have any advantages over nonminimal
algorithms?

Deadlock-free routing

Deadlock occurs when two
or more packets are
“circularly” waiting for
resources that are held by
other packets in the group.

The diagram at the right
illustrates how this can
occur with 2-hop
messages. Each packet is
waiting for a link occupied
by another packet.

What conditions are neces-
sary for deadlock to occur?

• a shared resource
• that is incrementally allocated and
• non-preemptible.

A channel is a shared resource, and channels are acquired
incrementally, as a route is built up.

How can deadlock be avoided? Basically, by constraining how
channel resources are allocated. Routing in dimension order is one
way. How can we see that in the diagram above?

How do we prove that an algorithm is deadlock free?

• Each channel is a resource (or each channel contains
resources).

Lecture 25 Architecture of Parallel Computers 5

• Messages need to use resources in order; this introduces
dependences between resources.

• We need to show that there are no cycles in the channel-
dependence graph

We can do this by finding a numbering of channel resources such
that every legal route follows a monotonic sequence

 no traffic pattern can lead to deadlock

This is trivial for acyclic networks, such as shuffle-exchange and
butterfly networks.

It is also trivial for trees and fat trees, as long as the upward and
downward channels are independent.

Example: Show Δx, Δy
routing on a k-ary 2D array
is deadlock free.

We view each bidirectional
channel as a pair of
unidirectional channels
numbered independently.

Channels in the x direction
are given lower numbers
than channels in the y
direction.

Given this numbering, any routing sequence that starts out in the x
direction, turns and then goes in the y direction is increasing.

Virtual channels

This proof easily generalizes to hypercubes—but not to toruses
because of the wraparound edges.

So, how can we do deadlock-free routing on toruses and other
higher-order networks?

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 3

3 2 1
13

14

15

15

14

13

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6

The basic approach is to provide virtual channels.

To do this we need more than one packet buffer per channel.

Output
Ports

Input
Ports

Cross-Bar

Example: Consider a torus with unidirectional links.

Reserve one packet buffer on each channel for messages destined
for nodes with a higher number than their source, i.e., messages that
don’t use wraparound channels.

Now such messages will always be able to make progress.

Wraparound messages may be delayed, but the network will not
deadlock.

Notice that this requires no more links or switches, just more buffers.

How can we break the four-message deadlock?

Lecture 25 Architecture of Parallel Computers 7

Packet switches
from low to high
channel

Let’s provide two virtual channels per physical channel, as shown
above.

• Messages at a node numbered higher than their destination are
routed on the “high” channels.

• Messages at a node numbered lower than their destination are
routed on the “low” channels.

This breaks the dependence cycle.

Example: In the k-ary 2D array above, let’s assume we have
messages 1  4, 4  12, 12  10, and 10  1. Show that all
messages can make progress.

This strategy can be generalized to d dimensions.

Turn-model routing

Note that x-y routing in dimension order allows only four of the eight
possible turns a packet might make on its way to its destination.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 8

+Y

-Y

+X-X

When a packet is traveling in the x direction, it is legal to turn into
the y direction, but once it is traveling in the y direction, it can
make no further turns.

Intuitively, we could prevent deadlock by disallowing only one turn in
each cycle.

It turns out that of the 16 possible ways to prohibit two turns in a 2D
array, 12 prevent deadlock.

These consist of the three algorithms below, and rotations of them.

west-first

north-last negative first

–x +x

+y

–y

Lecture 25 Architecture of Parallel Computers 9

Can you see that this “algorithm”
does not prevent deadlock?

Each of these algorithms allows
nonminimal routes to be followed.
On the right are some legal west-
first routes.

Exercise (on paper): Give one other example of a legal turn-model
routing algorithm, and one that is not deadlock free.

Adaptive routing

Adaptive routing has several advantages.

• If there is only one route from source to destination, failure of a
single link can leave the network disconnected.

• It can allow messages to avoid regions where there are long
queues and a lot of contention.

One interesting adaptive algorithm is “hot-potato” routing.

A switch never buffers packets. If > 1 packet is destined for the
same output channel, the switch “misroutes” all but one.

Store and Forward vs. Cut-Through

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 10

Early networks used
store-and-forward
routing:

A packet was sent from
one node to an
intermediate node
and buffered there.

But this took a lot of
time:

T = h  (Tswitch + Txmit)

For the last 25 years or
so, cut-through routing
has taken over.

Effectively, a pipeline is
set up, and flits are sent
through, one after anoth-
er, and are switched
without being buffered.

T = h 

Switch Design

[§12.4] In earlier lectures, we have seen that switches in an
interconnection network connect inputs to outputs, usually with some
kind of buffering.

Here is a basic diagram of a switch.

Lecture 25 Architecture of Parallel Computers 11

Crossbar

Input
Buffer

Control

Output
Ports

Input
Receiver Transmitter

Ports

Routing, Scheduling

Output
Buffer

Usually, the number of input ports is the same as the number of
output ports. This is called the degree of the switch.

Each input port includes a receiver. A received message goes into an
input buffer.

Each output port includes a transmitter to drive the link. There may
also be an output buffer.

The control logic implements the routing algorithm. It must include a
way to arbitrate among competing requests for the same output port.

A major constraint on switch size is the number of pins. How would
this be determined?

This tends to favor fast serial links. They use the least pins and
eliminate problems with skew across bit lines in a channel.

With parallel links, one of the wires is essentially a clock for the data
on the others.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 12

Logically, the crossbar in an n  n switch
is just an n-way multiplexer associated
with each dimension (at right).

In VLSI, it is typically realized as a bus
with a set of n tristate drivers (below).

Io I1 I2 I3

O0

Oi

O2

O3

Io

I1

I2

I3

An increasingly common
technique is to use memory as a
crossbar, by writing for each input
port and reading for each output
port. Explain.

RAM
phase

O0

Oi

O2

O3

DoutD in

I o

I 1
I 2

I 3

addr

