

Lecture 21 Architecture of Parallel Computers 1

Basic DSM Cache Coherence

[§10.3] Let us start off by considering a full bit-vector approach.

For each block of memory, assuming there are k processors, it
maintains at the home node of the block …

• k presence bits p[..]
• 1 dirty bit D

Cache state is represented the same way as in bus-based designs
(MSI, MESI, etc.).

• On a read by processor i, the home node reacts this way:

• If (D == 0) { supply data; p[i] = 1; }

• else { send intervention to owner; update home; D = 0;
p[i] = 1; supply data to i;}

• On a write by processor i; tell how the home reacts:

• On a write by processor i; tell how the home reacts:
o if (D == 0) { ; D = 1; p[i]=1;

supply data to node i; }

o else { ; p[owner] = 0;
p[i] = 1 ; supply data to i;}

• ••

P P

Cache Cache

Memory Directory

presence bits dirty bit

Interconnection Network

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfr87PGc3S508DSQmZ5YGN2JV3Z9s8dmvEs_xy80Z1qV42HMA/viewform
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfr87PGc3S508DSQmZ5YGN2JV3Z9s8dmvEs_xy80Z1qV42HMA/viewform

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

On the replacement of a dirty block by node i, the data is written back
to memory and the directory is updated to turn off the dirty bit and p[i].

On the replacement of a shared block, the directory may or may not
be updated.

How does a directory help? It keeps track of which nodes have
copies of a block, eliminating the need for .

Would directories be valuable if most data were shared by most of
the nodes in the system?

Fortunately, the number of valid copies of data on most writes is
small.

The attached animation uses the MESI protocol, with 3 block states
in main memory:

• EM (exclusive or modified)
• S (shared)
• U (unowned)

 Network transactions for coherence

o Read: read request
o ReadX: read exclusive (or write) request
o Upgr: upgrade request
o ReplyD: home replies with data to requestor
o Reply: home replies to requestor with IDs of sharers
o Inv: home asks sharer to invalidate
o WB+Inv: home asks owner to flush and invalidate
o WB+Int: home asks owner to flush and change to S
o Flush: owner flushes data to home + requestor
o InvAck: sharer/owner acks an invalidation msg
o Flush+InvAck: Flush, piggybacking an InvAck message

http://www.csc2.ncsu.edu/faculty/efg/506/s22/www/lectures/notes/lec21.ppt
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfgWfi8S1CLVRR0GLJ0R0t3z0cPSPfdfQ5KoAqvbtnV77lImQ/viewform

Lecture 21 Architecture of Parallel Computers 3

 Notation

o Transaction (Source → Destination)
o H = Home node

The following example is used in the animation:

Proc
action

P1
state

P2
state

P3
state

Dir state
@home Network messages # of

hops

R1 E – – EM, 100 Read (P1 → H),
ReplyD (H → P1) 2

W1 M – – EM, 100 — 0

R3 S – S S, 101
Read (P3 → H),
WB+Int (H → P1),
Flush (P1 → H, P3)

3

W3 I – M EM, 001

Upgr (P3 → H),
Reply (H → P3) //
Inv (H → P1),
InvAck(P1 → P3)

3

R1 S – S S, 101
Read (P1 → H),
WB+Int (H → P3),
Flush (P3 → H, P1)

3

R3 S – S S, 101 — 0

R2 S S S S, 111 Read (P2 → H),
ReplyD (H → P2) 2

Scaling with number of processors
In order for directory schemes to be practical, they must scale
gracefully.

• Scaling of memory and directory bandwidth

° Centralized directory is bandwidth bottleneck, just like
centralized memory.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

° How can we maintain directory information in a
distributed way?

• Scaling of performance characteristics

° traffic: # of network transactions each time protocol is
invoked

° latency: # of network transactions in critical path each
time

• Scaling of directory storage requirements

° Number of presence bits needed grows as the number
of processors.

 E.g., 64-byte block size and 1024 processors. How
many bits in block, vs. # of bits in directory?

Directory organization affects all of these issues.

Organizing a memory-based directory scheme
All info about copies is colocated with
the block itself at the home

This works just like a centralized
scheme, except that it is distributed.

Scaling of performance characteristics
• Traffic on a write is proportional

to number of sharers.
• Latency? Can issue invalidations

in parallel.

P

M

Scaling of storage overhead? Assume representation is a full bit-
vector.

Optimizations for full bit-vector schemes
• Increase (1) size (reduces storage overhead

proportionally).
• Use multicore nodes (one bit per multicore node, not per

processor)

https://docs.google.com/spreadsheets/d/1ZcyLhQGTPrE-VvgyaAJcYjEbSMkse7FoRuEDpfnoRSo/edit?usp=sharing

Lecture 21 Architecture of Parallel Computers 5

• still scales as pm, but only a problem for very large
machines

– 256 procs, 4 per chip, 128B line: (2) % o’head

► Reducing “width”: addressing the p term
• Observation: most blocks are cached by only few nodes
• Instead of keeping a bit per node, make entry contain a few

 (3) .
If p = 1024, 10-bit ⇒ can use 100 and
still save space.

• Sharing patterns indicate a few pointers should suffice (five
or so).

• We also need an overflow strategy for when there are more
sharers than pointers.

► Reducing “height”: addressing the m term.

• Observation: number of memory blocks >> number of cache
lines.

• Thus, most blocks will not be cached at any particular time;
therefore, most directory entries are useless at any given
time
• organize directory as a cache, rather than having one

entry per memory block (key is (4) , value is (5))

Organizing a cache-based directory scheme.
In a cache-based scheme, the home node only holds a pointer to the
rest of the directory information.

The copies are linked together via a distributed list that weaves
through caches.

Each cache tag has a pointer that points to the next cache with a
copy.

• On a read, a processor adds itself to the head of the list
(communication needed).

• On a write, it makes itself the head node on the list, then
propagates a chain of invalidations down the list.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6

 Each invalidation must be acknowledged.

• On a write-back, the node must delete itself from the list (and
therefore communicate with the nodes before and after it).

Disadvantages: All operations require communicating with at least
three nodes (node that is being operated on, previous node, and next
node).

Write latency is proportional to number of sharers.

Synchronization is needed

Advantages: Directory overhead is small.

Work of performing invalidations can be distributed among sharers.

The IEEE Scalable Coherent Interface has formalized protocols for
handling cache-based directory schemes.

The SSCI protocol
• SCI (Scalable Coherence Interface) protocol

o IEEE standard, ratified in 1993
o 7 state bits, 29 stable states + many pending states

• For illustration we will use Simple SCI (SSCI)
o Retains similarity with full-bit vector protocol:

• MESI states in the cache
• U, S, EM states in the memory directory
• Replaces the presence bits with a pointer

o Similar features to SCI

• Overall protocol operation
• Doubly linked list

o Many possible race conditions, which are mostly ignored
in the illustration

Lecture 21 Architecture of Parallel Computers 7

• Additional coherence network transactions (in addition to those
used in full bit-vector approach):

o WB+Int+UpdPtr
o UpdPtr: update next/prev/head pointers

Here is the example used in the animation.

Proc

action
P1

state
P2

state
P3

state
Dir

state
@home

Network message
of
hops

R1 E,0,0 – – EM, 1 Read (P1→ H),
ReplyD (H→P1) 2

W1 M,0,0 – – EM, 1 — 0

R3 S,3,0 – S,0,1 S, 3

Read (P3 → H),
Reply (H → P3),
WB+Int+UpdPtr (P3→P1),
Flush (P1 → H, P3)

4

W3 I,3,0 – M,0,0 EM, 3
Upgr (P3 → H) //
Inv (P3 → P1)
InvAck(P1 → P3)

2

R1 S,0,3 – S,1,0 S, 1

Read (P1 → H),
Reply (H → P1),
WB+Int+UpdPtr (P1→P3),
Flush (P3 → H, P1)

4

R3 S,0,3 – S,1,0 S, 1 — 0

R2 S,2,3 S,0,1 S,1,0 S, 2
Read (P2 → H),
ReplyD/ID (H → P2),
UpdPtr (P2 → P1)

3

	Basic DSM Cache Coherence
	Scaling with number of processors
	Organizing a memory-based directory scheme
	Organizing a cache-based directory scheme.

	The SSCI protocol

