
 
 

Lecture 21 Architecture of Parallel Computers 1 
 

Basic DSM Cache Coherence 

[§10.3]  Let us start off by considering a full bit-vector approach. 

 
For each block of memory, assuming there are k processors, it 
maintains at the home node of the block … 

• k presence bits p[..] 
• 1 dirty bit D 

Cache state is represented the same way as in bus-based designs 
(MSI, MESI, etc.). 

• On a read by processor i, the home node reacts this way:  

• If (D == 0) { supply data; p[i] = 1; } 

• else { send intervention to owner; update home; D = 0; 
p[i] = 1; supply data to i;} 

• On a write by processor i; tell how the home reacts:  

• On a write by processor i; tell how the home reacts:  
o if (D == 0) {       ; D = 1; p[i]=1; 

supply data to node i; } 

o else {       ; p[owner] = 0;  
p[i] = 1 ; supply data to i;} 

• ••
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https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfr87PGc3S508DSQmZ5YGN2JV3Z9s8dmvEs_xy80Z1qV42HMA/viewform
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfr87PGc3S508DSQmZ5YGN2JV3Z9s8dmvEs_xy80Z1qV42HMA/viewform
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On the replacement of a dirty block by node i, the data is written back 
to memory and the directory is updated to turn off the dirty bit and p[i]. 

On the replacement of a shared block, the directory may or may not 
be updated.   
 

How does a directory help?  It keeps track of which nodes have 
copies of a block, eliminating the need for     . 

Would directories be valuable if most data were shared by most of 
the nodes in the system?   
 
 
 
 
Fortunately, the number of valid copies of data on most writes is 
small. 

The attached animation uses the MESI protocol, with 3 block states 
in main memory: 

• EM (exclusive or modified)   
• S (shared) 
• U (unowned)   

 
 Network transactions for coherence 

o Read: read request  
o ReadX: read exclusive (or write) request 
o Upgr: upgrade request 
o ReplyD: home replies with data to requestor 
o Reply: home replies to requestor with IDs of sharers 
o Inv: home asks sharer to invalidate 
o WB+Inv: home asks owner to flush and invalidate 
o WB+Int: home asks owner to flush and change to S 
o Flush: owner flushes data to home + requestor 
o InvAck: sharer/owner acks an invalidation msg 
o Flush+InvAck: Flush, piggybacking an InvAck message   

http://www.csc2.ncsu.edu/faculty/efg/506/s22/www/lectures/notes/lec21.ppt
https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfgWfi8S1CLVRR0GLJ0R0t3z0cPSPfdfQ5KoAqvbtnV77lImQ/viewform
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 Notation 

o Transaction (Source → Destination) 
o H = Home node 

The following example is used in the animation: 

Proc 
action 

P1 
state  

P2 
state 

P3 
state 

Dir state 
@home Network messages # of 

hops 

R1 E – – EM, 100 Read (P1 → H),  
ReplyD (H → P1) 2 

W1 M – – EM, 100 — 0 

R3 S – S S, 101 
Read (P3 → H),  
WB+Int (H → P1), 
Flush (P1 → H, P3) 

3 

W3 I – M EM, 001 

Upgr (P3 → H), 
Reply (H → P3) //  
Inv (H → P1), 
InvAck(P1 → P3) 

3 

R1 S – S S, 101 
Read (P1 → H),  
WB+Int (H → P3), 
Flush (P3 → H, P1) 

3 

R3 S – S S, 101 — 0 

R2 S S S S, 111 Read (P2 → H), 
ReplyD (H → P2) 2 

Scaling with number of processors 
In order for directory schemes to be practical, they must scale 
gracefully. 

• Scaling of memory and directory bandwidth 

° Centralized directory is bandwidth bottleneck, just like 
centralized memory. 
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° How can we maintain directory information in a 
distributed way? 

• Scaling of performance characteristics 

° traffic: # of network transactions each time protocol is 
invoked 

° latency: # of network transactions in critical path each 
time 

• Scaling of directory storage requirements 

° Number of presence bits needed grows as the number 
of processors. 

 E.g., 64-byte block size and 1024 processors.  How 
many bits in block, vs. # of bits in directory?   
 

Directory organization affects all of these issues. 

Organizing a memory-based directory scheme 
All info about copies is colocated with 
the block itself at the home 

This works just like a centralized 
scheme, except that it is distributed. 

Scaling of performance characteristics 
• Traffic on a write is proportional 

to number of sharers. 
• Latency?  Can issue invalidations 

in parallel. 

P

M

 

Scaling of storage overhead?  Assume representation is a full bit-
vector.   

Optimizations for full bit-vector schemes 
• Increase  (1)  size (reduces storage overhead 

proportionally). 
• Use multicore nodes (one bit per multicore node, not per 

processor) 

https://docs.google.com/spreadsheets/d/1ZcyLhQGTPrE-VvgyaAJcYjEbSMkse7FoRuEDpfnoRSo/edit?usp=sharing
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• still scales as pm, but only a problem for very large 
machines 

– 256 procs, 4 per chip, 128B line:   (2) % o’head 
 

► Reducing “width”: addressing the p term 
• Observation: most blocks are cached by only few nodes 
• Instead of keeping a bit per node, make entry contain a few  

 (3) . 
If p = 1024, 10-bit     ⇒ can use 100    and 
still save space. 

• Sharing patterns indicate a few pointers should suffice (five 
or so). 

• We also need an overflow strategy for when there are more 
sharers than pointers. 

 
► Reducing “height”: addressing the m term. 

• Observation: number of memory blocks >> number of cache 
lines. 

• Thus, most blocks will not be cached at any particular time; 
therefore, most directory entries are useless at any given 
time 
• organize directory as a cache, rather than having one 

entry per memory block  (key is  (4) , value is  (5)   ) 
 

Organizing a cache-based directory scheme. 
In a cache-based scheme, the home node only holds a pointer to the 
rest of the directory information. 

The copies are linked together via a distributed list that weaves 
through caches. 

Each cache tag has a pointer that points to the next cache with a 
copy. 

• On a read, a processor adds itself to the head of the list 
(communication needed). 

• On a write, it makes itself the head node on the list, then 
propagates a chain of invalidations down the list. 
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 Each invalidation must be acknowledged. 

• On a write-back, the node must delete itself from the list (and 
therefore communicate with the nodes before and after it). 

Disadvantages:  All operations require communicating with at least 
three nodes (node that is being operated on, previous node, and next 
node). 

Write latency is proportional to number of sharers. 

Synchronization is needed  
 

Advantages:  Directory overhead is small.   
 

Work of performing invalidations can be distributed among sharers. 

The IEEE Scalable Coherent Interface has formalized protocols for 
handling cache-based directory schemes.   
 

The SSCI protocol 
• SCI (Scalable Coherence Interface) protocol 

o IEEE standard, ratified in 1993 
o 7 state bits, 29 stable states + many pending states 

• For illustration we will use Simple SCI (SSCI) 
o Retains similarity with full-bit vector protocol:  

• MESI states in the cache 
• U, S, EM states in the memory directory 
• Replaces the presence bits with a pointer 

o Similar features to SCI 

• Overall protocol operation 
• Doubly linked list 

o Many possible race conditions, which are mostly ignored 
in the illustration 
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• Additional coherence network transactions (in addition to those 
used in full bit-vector approach): 

o WB+Int+UpdPtr 
o UpdPtr: update next/prev/head pointers 

Here is the example used in the animation. 
 
Proc 

action 
P1 

state  
P2 

state 
P3 

state 
Dir 

state 
@home 

Network message 
# of 
hops 

R1 E,0,0 – – EM, 1 Read (P1→ H),  
ReplyD (H→P1) 2 

W1 M,0,0 – – EM, 1 — 0 

R3 S,3,0 – S,0,1 S, 3 

Read (P3 → H),  
Reply (H → P3), 
WB+Int+UpdPtr (P3→P1), 
Flush (P1 → H, P3) 

4 

W3 I,3,0 – M,0,0 EM, 3 
Upgr (P3 → H) //  
Inv (P3 → P1)  
InvAck(P1 → P3) 

2 

R1 S,0,3 – S,1,0 S, 1 

Read (P1 → H),  
Reply (H → P1), 
WB+Int+UpdPtr (P1→P3), 
Flush (P3 → H, P1) 

4 

R3 S,0,3 – S,1,0 S, 1 — 0 

R2 S,2,3 S,0,1 S,1,0 S, 2 
Read (P2 → H), 
ReplyD/ID (H → P2),  
UpdPtr (P2 → P1) 

3 
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