

Lecture 2 Architecture of Parallel Computers 1

Three parallel-programming models

• Shared-memory programming is like using a “bulletin board”
where you can communicate with colleagues.

• Message-passing is like communicating via e-mail or telephone
calls. There is a well defined event when a message is sent or
received.

• Data-parallel programming is a “regimented” form of
cooperation. Many processors perform an action separately on
different sets of data, then exchange information globally before
continuing en masse.

User-level communication primitives are provided to realize the
programming model

• There is a mapping between language primitives of the
programming model and these primitives

These primitives are supported directly by hardware, or via OS, or via
user software.

In the early days, the kind of programming model that could be used
was closely tied to the architecture.

Today—

• Compilers and software play important roles as bridges
• Technology trends exert a strong influence

The result is convergence in organizational structure, and relatively
simple, general-purpose communication primitives.

A shared address space

In the shared-memory model, processes can access the same
memory locations.

Communication occurs implicitly as result of loads and stores

This is convenient.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

• Wide range of granularities supported.

• Similar programming model to time-sharing on uniprocessors,
except that processes run on different processors

• Wide range of scale: few to hundreds of processors

Good throughput on multiprogrammed workloads.

This is popularly known as the shared memory model, even though
memory may be physically distributed among processors.

The shared-memory model

A process is a virtual address space plus

Portions of the address spaces of tasks are shared.

What does the private region of the virtual address space usually
contain?

Conventional memory operations can be used for communication.

Special atomic operations are used for synchronization.

P
1

P
2

P
n

P
0

Load

P
2

Virtual address spaces for a
collection of processes com-
municating via shared addresses

Machine
physical address
space

Shared portion
of address
space

Private portion
of address space

Common physical
addresses

Store

private

P

1

private

P

0

private

P
n

private

Lecture 2 Architecture of Parallel Computers 3

The interconnection structure

The interconnect in a shared-memory
multiprocessor can take several forms.

It may be a crossbar switch.

Each processor has a direct connection
to each memory and I/O controller.

Bandwidth scales with the number of
processors.

P

P

C

C

I/O

I/O

M MM M

Unfortunately, cost scales with

This is sometimes called the “mainframe approach.”

At the other end of the spectrum is a shared-bus architecture.

All processors, memories, and I/O controllers are connected to the
bus.

Such a multiprocessor is called a symmetric multiprocessor (SMP).

What are some advantages and disadvantages of organizing a
multiprocessor this way? List them here.

•
•
•

A compromise between these two organizations is a multistage
interconnection network.

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSdFzPLCIGREFfSaAia-7MJUKesI23MaN-PxW3zLS3QXjcv1jw/viewform

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

The processors are on one
side, and the memories and
controllers are on the other.

Each memory reference has
to traverse the stages of the
network.

Why is this called a
compromise between the
other two strategies?

0

1

2

3

4

5

6

7

0

2

1

3

4

6

5

7

0

4

1

5

2

6

3

7

0

1

2

3

4

5

6

7

Stage 0 Stage 1 Stage 2

For small configurations, however, a shared bus is quite viable.

Message passing

In a message-passing architecture, a complete computer, including
the I/O, is used as a building block.

Communication is via explicit I/O operations, instead of loads and
stores.

• A program can directly access only its private address space (in
local memory).

• It communicates via explicit messages (send and receive).

It is like a network of workstations (clusters), but more tightly
integrated.

Easier to build than a scalable shared-memory machine.

Send-receive primitives

Lecture 2 Architecture of Parallel Computers 5

The programming model is further removed from basic hardware
operations.

Library or OS intervention is required to do communication.

• send specifies a buffer to be transmitted, and the receiving
process.

• receive specifies sending process, and a storage area to
receive into.

• A memory-to-memory copy is performed, from the address
space of one process to the address space of the other.

• There are several possible variants, including whether send
completes—

when the receive has been executed,

when the send buffer is available for reuse, or

when the message has been sent.

• Similarly, a receive can wait for a matching send to execute, or
simply fail if one has not occurred.

There are many overheads: copying, buffer management, protection.
Let’s describe each of these. Submit your descriptions here.

• Why is there an overhead to copying, compared to a share-
memory machine?

t

Local
process
address
space

Local
process
address
space

Address X

Address Y

Process P Process Q

send(X, Q)

receive(Y, P)

match!

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLScvu2VCgslDGOtT3oDWyRhS_eAdi3MlidY3eiylKJf1H1XojQ/viewform

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6

• Describe the overhead of buffer management.

• What is the overhead for protection?

Here’s an example from the textbook of the difference between
shared address-space and message-passing programming.

A shared-memory system uses the model:

int a, b, signal;

…

void dosum(<args>) {

 while (signal == 0) {}; // wait until instructed to work

 printf(“child thread> sum is %d”, a + b);

 signal = 0; // my work is done

}

void main() {

 signal = 0;

 thread_create(&dosum); // spawn child thread

 a = 5, b = 3;

 signal = 1; // tell child to work

 while (signal == 1) {} // wait until child done

 printf(“all done, exiting\n”);

}

Message-passing uses the model:

int a, b;

…

void dosum() {

 recvMsg(mainID, &a, &b);

 printf(“child process> sum is %d”, a + b);

}

void main() {

 if (fork() == 0) // I am the child process

 dosum();

 else { // I am the parent process

 a = 5, b = 3;

 sendMsg(childID, a, b);

Lecture 2 Architecture of Parallel Computers 7

 wait(childID);

 printf(“all done, exiting\n”);

 }

}

Here’s the relevant section of documentation on the fork() function:

“Upon successful completion, fork() and fork1() return 0 to the

child process and return the process ID of the child process to the
parent process.”

Interconnection topologies

Early message-passing designs provided hardware primitives that
were very close to the message-passing model.

Each node was connected to a
fixed set of neighbors in a
regular pattern by point-to-point
links that behaved as FIFOs.

A common design was a

hypercube, which had 2  n
links per node, where n was the
number of dimensions.

The diagram shows a 3D cube.

One problem with hypercubes
was that they were difficult to
lay out on silicon.

000001

010011

100

110

101

111

Because of that, 2D meshes eventually supplanted hypercubes.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 8

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

a b c d

a b c d

f

g

h

f

g

h

e

e

Here is an example
of a 16-node mesh.
Note that the last
element in one row is
connected to the first
element in the next.

If the last element in
each row were
connected to the first
element in the same
row, we would have a
torus instead.

Early message-passing machines used a FIFO on each link.

• Thus, software sends were implemented as synchronous
hardware operations at each node.

 What was the problem with this, for multi-hop messages?

• Synchronous ops were replaced by DMA, enabling non-
blocking operations

– A DMA device is a special-purpose controller that transfers
data between memory and an I/O device without processor
intervention.

– Messages were buffered by the message layer of the
system at the destination until a receive took place.

– When a receive took place, the data was

The diminishing role of topology.

• With store-and-forward routing, topology was important.

Lecture 2 Architecture of Parallel Computers 9

 Parallel algorithms were often changed to conform to the
topology of the machine on which they would be run.

• Introduction of pipelined (“wormhole”) routing made topology
less important.

In current machines, it makes less difference how far the data travels.

This simplifies programming; cost of interprocessor communication is
essentially independent of which processor is receiving the data.

Toward architectural convergence

In 1990, there was a clear distinction between message-passing and
shared-memory machines. Today, there isn’t a distinct boundary.

• Message-passing operations are supported on most shared-
memory machines.

• A shared virtual address space can be constructed on a
message-passing machine, by sharing pages between
processors.

° When a missing page is accessed, a page fault occurs.

° The OS fetches the page from the remote node via
message-passing.

At the machine-organization level, the designs have converged too.

The block diagrams for shared-memory and message-passing
machines look essentially like this:

In shared memory, the network
interface is integrated with the
memory controller.

It initiates a transaction to access
memory at a remote node.

In message-passing, the network
interface is essentially an I/O device.

What does Solihin say about the ease of writing shared-memory and
message-passing programs on these architectures?

M    M M

Network

P

$

P

$

P

$

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSdrhAuq2cEufogd2LTDgOxdMSm_4IL4MhybBpNUGmifAPOUbg/viewform

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 10

• Which model is easier to program for initially?

• Why doesn’t it make much difference in the long run?

