

Lecture 17 Architecture of Parallel Computers 1

Barriers

[§8.2] Like locks, barriers can be implemented in different ways,
depending upon how important efficiency is.

 Performance criteria

o Latency: time spent from reaching the barrier to leaving it

o Traffic: number of bytes communicated as a function of
number of processors

 In current systems, barriers are typically implemented in
software using locks, flags, counters.

o Adequate for small systems
o Not scalable for large systems

A thread might have this general organization:

..
parallel region
BARRIER
parallel region
BARRIER
..

Note that barriers are usually constructed using locks, and thus can
use any of the lock implementations in the previous lecture.

A barrier can be implemented like this (first attempt):

// shared variables used in barrier & their initial values
int numArrived = 0;
lock_type barLock = 0;
int canGo = 0;

// barrier implementation
void barrier () {
 lock(&barLock);
 if (numArrived == 0) // first thread sets flag
 canGo = 0;
 numArrived++;

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

 int myCount = numArrived;
 unlock(&barLock);

 if (myCount < NUM_THREADS) {
 while (canGo == 0) {}; // wait for last thread
 }
 else { // this is the last thread to arrive
 numArrived = 0; // reset for next barrier
 canGo = 1; // release all threads
 }
}

What’s wrong with this?

Sense-reversal centralized barrier

[§8.2.1] The simplest solution to the correctness problem above just
toggles the barrier …

 the first time, the threads wait for canGo to become 1;
 the next time they wait for it to become 0;
 and then they alternate waiting for it to become 1 and 0 at

successive barriers.

Here is the code:

// variables used in a barrier and their initial values
int numArrived = 0;
lock_type barLock = 0;
int canGo = 0;

// thread-private variable
int valueToAwait = 0;

// barrier implementation
void barrier () {
 valueToAwait = 1 - valueToAwait; // toggle it
 lock(&barLock);
 numArrived++;
 int myCount = numArrived;
 unlock(&barLock);

Lecture 17 Architecture of Parallel Computers 3

 if (myCount < NUM_THREADS) {
 while (canGo != valueToAwait) {}; // await last thread
 }
 else { // this is the last thread to arrive
 numArrived = 0; // reset for next barrier
 canGo = valueToAwait; // release all threads
 }
}

How does the traffic at this barrier scale?

Combining-tree barrier

[§8.2.2] A tree-based strategy can be used to reduce contention,
similarly to the way we used partial sums in Lecture 6.

 Threads represent the leaf nodes of a tree.

 The non-leaf nodes are the variables that the threads spin on.

 Each thread spins on the variable of its immediate parent,
which constitutes an intermediate barrier.

 Once all threads have arrived at the intermediate barrier, one of
these threads goes on and spins on the variable immediately
above.

 This is repeated until the root is reached. At this point, the root
releases all threads by setting a flag.

How does this improve performance?

But there is an offsetting cost to a combining tree. What is it?

[§8.2.3] In very large supercomputers, however, this technique does
not suffice.

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

The BlueGene/L system has a special barrier network for
implementing barriers and broadcasting notifications to processors.

The network contains four independent channels.

Each level does a global
and of the signals from
the levels below it.

The signals are combined
in hardware and
propagate to the top of a
combining tree.

The tree can also be used to do a global interrupt when the entire
machine or partition must be stopped as soon as possible “for
diagnostic purposes.”

In this case, each level does a global or of the signals from beneath.

Once the signal propagates to the top of the tree, the resultant
notification is broadcast down the tree.

The round-trip latency is only 1.5 μs for a system of 64K nodes.

