

Lecture 16 Architecture of Parallel Computers 1

Lock Implementations

[§8.1] Recall the three kinds of synchronization from Lecture 6:

• Point-to-point
• Lock
•

Performance metrics for lock implementations

• Uncontended latency
o Time to acquire a lock when there is no contention

• Traffic
o Lock acquisition when lock is already locked
o Lock acquisition when lock is free
o Lock release

• Fairness
o Degree in which a thread can acquire a lock with respect

to others

• Storage
o As a function of # of threads/processors

The need for atomicity
This code sequence illustrates the need for atomicity. Explain.

void lock (int *lockvar) {
 while (*lockvar == 1) {} ; // wait until released
 *lockvar = 1; // acquire lock
}

void unlock (int *lockvar) {
 *lockvar = 0;
}

In assembly language, the sequence looks like this:

lock: ld R1, &lockvar // R1 = lockvar
 bnz R1, lock // jump to lock if R1 != 0

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 2

 sti &lockvar, #1 // lockvar = 1
 ret // return to caller
unlock: sti &lockvar, #0 // lockvar = 0
 ret // return to caller

The ld-to-sti sequence must be executed atomically:

• The sequence appears to execute in its entirety
• Multiple sequences are serialized

Examples of atomic instructions

• test-and-set Rx, M

o read the value stored in memory location M, test the value
against a constant (e.g. 0), and if they match, write the
value in register Rx to the memory location M.

• fetch-and-op M

o read the value stored in memory location M, perform op to
it (e.g., increment, decrement, addition, subtraction), then
store the new value to the memory location M.

• exchange Rx, M

o atomically exchange (or swap) the value in memory
location M with the value in register Rx.

• compare-and-swap Rx, Ry, M

o compare the value in memory location M with the value in
register Rx. If they match, write the value in register Ry to
M, and copy the value in Rx to Ry.

How to ensure one atomic instruction is executed at a time:

1. Reserve the bus until done
o Other atomic instructions cannot get to the bus

Lecture 16 Architecture of Parallel Computers 3

2. Reserve the cache block involved until done
o Obtain exclusive permission (e.g. “M” in MESI)
o Reject or delay any invalidation or intervention requests

until done

3. Provide “illusion” of atomicity instead
o Using load-link/store-conditional (to be discussed later)

Test and set
test-and-set can be used like this to implement a lock:

lock: t&s R1, &lockvar // R1 = MEM[&lockvar];
 // if (R1==0) MEM[&lockvar]=1
 bnz R1, lock; // jump to lock if R1 != 0
 ret // return to caller
unlock: sti &lockvar, #0 // MEM[&lockvar] = 0
 ret // return to caller

What value does lockvar have when the lock is acquired? free?

Here is an example of test-and-set execution. Describe what it
shows.

Let’s look at how a sequence of test-and-sets by three processors
plays out:

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4

Request P1 P2 P3 BusRequest
Initially – – – –
P1: t&s M – – BusRdX
P2: t&s I M – BusRdX
P3: t&s I I M BusRdX
P2: t&s I M I BusRdX
P1: unlock M I I BusRdX
P2: t&s I M I BusRdX
P3: t&s I I M BusRdX
P3: t&s I I M –
P2: unlock I M I BusRdX
P3: t&s I I M BusRdX
P3: unlock I I M –

How does test-and-set perform on the four metrics listed above?

• Uncontended latency
• Fairness
• Traffic
• Storage

Drawbacks of Test&Set Lock (TSL)
What is the main drawback of test&set locks?

•

•

Without changing the lock mechanism, how can we diminish this
overhead?

• : pause for awhile

o by too little:

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSeqkDQaU0RH-BjYy3Wv-RScNgqLrFuKF5u2suMNlgNtAo31XA/viewform

Lecture 16 Architecture of Parallel Computers 5

o by too much:

• Exponential : Increase the interval
exponentially with each failure.

Test and Test&Set Lock (TTSL)
• Busy-wait with ordinary read operations, not test&set.

o Cached lock variable will be invalidated when release
occurs

• When value changes (to 0), try to obtain lock with test&set
o Only one attempter will succeed; others will fail and start

testing again.

Let’s compare the code for TSL with TTSL.

TSL:

lock: t&s R1, &lockvar // R1 = MEM[&lockvar];
 // if (R1==0) MEM[&lockvar]=1
 bnz R1, lock; // jump to lock if R1 != 0
 ret // return to caller
unlock: sti &lockvar, #0 // MEM[&lockvar] = 0
 ret // return to caller

TTSL:

lock: ld R1, &lockvar // R1 = MEM[&lockvar]
 bnz R1, lock; // jump to lock if R1 != 0
 t&s R1, &lockvar // R1 = MEM[&lockvar];
 // if (R1==0)MEM[&lockvar]=1
 bnz R1, lock; // jump to lock if R1 != 0
 ret // return to caller

unlock: sti &lockvar, #0 // MEM[&lockvar] = 0
 ret // return to caller

The lock method now contains two loops. What would happen if we
removed the second loop?

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6

Here’s a trace of a TSL, and then TTSL, execution. Let’s compare
them line by line.

Fill out this table:

 TSL TTSL
BusReads
BusReadXs
BusUpgrs
invalidations

(What’s the proper way to count invalidations?)

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfAE8wYLyzN4kQhpMCMQQjJlvqCHIM1Hu-Y5JI7yOvkv-Idgw/viewform

Lecture 16 Architecture of Parallel Computers 7

TSL: Request P1 P2 P3 BusRequest
Initially – – – –
P1: t&s M – – BusRdX
P2: t&s I M – BusRdX
P3: t&s I I M BusRdX
P2: t&s I M I BusRdX
P1: unlock M I I BusRdX
P2: t&s I M I BusRdX
P3: t&s I I M BusRdX
P3: t&s I I M –
P2: unlock I M I BusRdX
P3: t&s I I M BusRdX
P3: unlock I I M –

TSL vs. TTSL summary

TTSL: Request P1 P2 P3 Bus Request
Initially – – – –
P1: ld E – - BusRd
P1: t&s M – – –
P2: ld S S – BusRd
P3: ld S S S BusRd
P2: ld S S S –
P1: unlock M I I BusUpgr
P2: ld S S I BusRd
P2: t&s I M I BusUpgr
P3: ld I S S BusRd
P3: ld I S S –
P2: unlock I M I BusUpgr
P3: ld I S S BusRd
P3: t&s I I M BusUpgr
P3: unlock I I M –

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 8

• Successful lock acquisition:
o 2 bus transactions in TTSL

 1 BusRd to intervene with a remotely cached block
 1 BusUpgr to invalidate all remote copies

o vs. only 1 in TSL
 1 BusRdX to invalidate all remote copies

• Failed lock acquisition:
o 1 bus transaction in TTSL

 1 BusRd to read a copy
 then, loop until lock becomes free

o vs. unlimited with TSL
 Each attempt generates a BusRdX

LL/SC

• TTSL is an improvement over TSL.

• But bus-based locking
o has a limited applicability (explain)

o is not scalable with fine-grain locks (explain)

• Suppose we could lock a cache block instead of a bus …
o Expensive, must rely on buffering or NACK

• Instead of providing atomicity, can we provide an illusion of
atomicity instead?

o This would involve detecting a violation of atomicity.
o If something “happens to” the value loaded, cancel the

store (because we must not allow newly stored value to
become visible to other processors)

Lecture 16 Architecture of Parallel Computers 9

o Go back and repeat all other instructions (load, branch,
etc.).

This can be done with two new instructions:

• Load Linked/Locked (LL)
o reads a word from memory, and
o stores the address in a special LL register

o The LL register is cleared if anything happens that may
break atomicity, e.g.,
 A context switch occurs
 The block containing the address in the LL register

is invalidated.

• Store Conditional (SC)
o tests whether the address in the LL register matches the

store address
o if so, store succeeds: store goes to cache/memory;
o else, store fails: the store is canceled, 0 is returned.

Here is the code.

lock: LL R1, &lockvar // R1 = lockvar;
 // LINKREG = &lockvar
 bnz R1, lock // jump to lock if R1 != 0
 add R1, R1, #1 // R1 = 1
 SC R1, &lockvar // lockvar = R1;
 beqz R1, lock // jump to lock if SC fails
 ret // return to caller

unlock: sti &lockvar, #0 // lockvar = 0
 ret // return to caller

Note that this code, like the TTSL code, consists of two loops.
Compare each loop with its TTSL counterpart.

• The first loop
• The second loop

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 10

Here is a trace of execution. Compare it with TTSL.

 Request P1 P2 P3 BusRequest
Initially – – – –
P1: LL E – – BusRd
P1: SC M – – –
P2: LL S S – BusRd
P3: LL S S S BusRd
P2: LL S S S –
P1: unlock M I I BusUpgr
P2: LL S S I BusRd
P2: SC I M I BusUpgr
P3: LL I S S BusRd
P3: LL I S S –
P2: unlock I M I BusUpgr
P3: LL I S S BusRd
P3: SC I I M BusUpgr
P3: unlock I I M –

• Similar bus traffic

o Spinning using loads ⇒ no bus transactions when the
lock is not free

o Successful lock acquisition involves two bus transactions.
What are they?

• But a failed SC does not generate a bus transaction (in TTSL,
all test&sets generate bus transactions).

o Why don’t SCs fail often?

Limitations of LL/SC

• Suppose a lock is highly contended by p threads
o There are O(p) attempts to acquire and release a lock

https://docs.google.com/forms/d/e/1FAIpQLScIeyCrLVAWUWeTwYB4peorYNFIwy8K3hCW5Avserr1s2VMEw/viewform?usp=sf_link

Lecture 16 Architecture of Parallel Computers 11

o A single release invalidates O(p) caches, causing O(p)
subsequent cache misses

o Hence, each critical section causes O(p2) bus traffic

• Fairness: There is no guarantee that a thread that contends for
a lock will eventually acquire it.

These issues can be addressed by two different kinds of locks.

Ticket Lock
• Ensures fairness, but still incurs O(p2) traffic
• Uses the concept of a “bakery” queue
• A thread attempting to acquire a lock is given a ticket number

representing its position in the queue.
• Lock acquisition order follows the queue order.

Implementation:

ticketLock_init(int *next_ticket, int *now_serving) {
 *now_serving = *next_ticket = 0;
}

ticketLock_acquire(int *next_ticket, int *now_serving) {
 my_ticket = fetch_and_inc(next_ticket);
 while (*now_serving != my_ticket) {};
}

ticketLock_release(int *next_ticket, int *now_serving) {
 *now_serving++;
}

Trace:

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 12

Steps next_ticket now_serving
my_ticket

P1 P2 P3
Initially 0 0 – – –
P1: fetch&inc 1 0 0 – –
P2: fetch&inc 2 0 0 1 –
P3: fetch&inc 3 0 0 1 2
P1:now_serving++ 3 1 0 1 2
P2:now_serving++ 3 2 0 1 2
P3:now_serving++ 3 3 0 1 2

Note that fetch&inc can be implemented with LL/SC.
Array-Based Queueing Locks
With a ticket lock, a release still invalidates O(p) caches.

Idea: Avoid this by letting each thread wait for a unique variable.
Waiting processes poll on different locations in an array of size p.

Just change now_serving to an array! (renamed “can_serve”).

A thread attempting to acquire a lock is given a ticket number in the
queue.
Lock acquisition order follows the queue order

• Acquire
o fetch&inc obtains the address on which to spin (the next

array element).
o We must ensure that these addresses are in different

cache lines or memories
• Release

o Set next location in array to 1, thus waking up process
spinning on it.

Advantages and disadvantages:

• O(1) traffic per acquire with coherent caches
o And each release invalidates only one cache.

• FIFO ordering, as in ticket lock, ensuring fairness

Lecture 16 Architecture of Parallel Computers 13

• But, O(p) space per lock
• Good scalability for bus-based machines

Implementation:

ABQL_init(int *next_ticket, int *can_serve) {
 *next_ticket = 0;
 for (i=1; i<MAXSIZE; i++)
 can_serve[i] = 0;
 can_serve[0] = 1;
}

ABQL_acquire(int *next_ticket, int *can_serve) {
 *my_ticket = fetch_and_inc(next_ticket) % MAXSIZE;
 while (can_serve[*my_ticket] != 1) {};
}

ABQL_release(int *next_ticket, int *can_serve) {
 can_serve[*my_ticket + 1] = 1;
 can_serve[*my_ticket] = 0; // prepare for next time
}

Trace:

Steps next_ticket can_serve[]
my_ticket

P1 P2 P3
Initially 0 [1, 0, 0, 0] – – –
P1: f&i 1 [1, 0, 0, 0] 0 – –
P2: f&i 2 [1, 0, 0, 0] 0 1 –
P3: f&i 3 [1, 0, 0, 0] 0 1 2
P1: can_serve[1]=1 3 [0, 1, 0, 0] 0 1 2
P2: can_serve[2]=1 3 [0, 0, 1, 0] 0 1 2
P3: can_serve[3]=1 3 [0, 0, 0, 1] 0 1 2

Let’s compare array-based queueing locks with ticket locks.

Fill out this table, assuming that 10 threads are competing:

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSc0EjVSsPEDOiLgzS_lNu4SLutmW9BAUsfDMFcqt5_pOARerg/viewform

© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 14

 Ticket locks Array-based
queueing locks

#of invalidations
of subsequent
cache misses

Comparison of lock implementations

Criterion TSL TTSL LL/SC Ticket ABQL

Uncontested latency Lowest Lower Lower Higher Higher

1 release max traffic O(p) O(p) O(p) O(p) O(1)
Wait traffic High Low – – –
Storage O(1) O(1) O(1) O(1) O(p)
Fairness guaranteed? No No No Yes Yes

Discussion:

• Design must balance latency vs. scalability

o ABQL is not necessarily best.
o Often LL/SC locks perform very well.
o Scalable programs rarely use highly-contended locks.

• Fairness sounds good in theory, but

o Must ensure that the current/next lock holder does not
suffer from context switches or any long delay events

	Lock Implementations
	The need for atomicity
	Test and set
	Drawbacks of Test&Set Lock (TSL)

	Test and Test&Set Lock (TTSL)
	TSL vs. TTSL summary

	LL/SC
	Limitations of LL/SC

	Ticket Lock
	Array-Based Queueing Locks

	Comparison of lock implementations

