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Lock Implementations 

[§8.1]  Recall the three kinds of synchronization from Lecture 6: 

• Point-to-point   
• Lock 
•  

Performance metrics for lock implementations 

• Uncontended latency 
o Time to acquire a lock when there is no contention 

• Traffic 
o Lock acquisition when lock is already locked 
o Lock acquisition when lock is free 
o Lock release  

• Fairness 
o Degree in which a thread can acquire a lock with respect 

to others 

• Storage 
o As a function of # of threads/processors 

The need for atomicity 
This code sequence illustrates the need for atomicity.  Explain. 

void lock (int *lockvar) { 
  while (*lockvar == 1) {} ;  // wait until released 
  *lockvar = 1;               // acquire lock 
}  
 
void unlock (int *lockvar) { 
  *lockvar = 0; 
} 
 
In assembly language, the sequence looks like this:  

lock: ld R1, &lockvar     // R1 = lockvar 
      bnz R1, lock        // jump to lock if R1 != 0 
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      sti &lockvar, #1    // lockvar = 1 
      ret                 // return to caller 
unlock: sti  &lockvar, #0 // lockvar = 0 
        ret               // return to caller 

The ld-to-sti sequence must be executed atomically: 

• The sequence appears to execute in its entirety 
• Multiple sequences are serialized 

Examples of atomic instructions 

• test-and-set Rx, M  

o read the value stored in memory location M, test the value 
against a constant (e.g. 0), and if they match, write the 
value in register Rx to the memory location M. 

• fetch-and-op M 

o read the value stored in memory location M, perform op to 
it (e.g., increment, decrement, addition, subtraction), then 
store the new value to the memory location M.  

• exchange Rx, M 

o atomically exchange (or swap) the value in memory 
location M with the value in register Rx.  

• compare-and-swap Rx, Ry, M 

o compare the value in memory location M with the value in 
register Rx. If they match, write the value in register Ry to 
M, and copy the value in Rx to Ry. 

How to ensure one atomic instruction is executed at a time: 

1. Reserve the bus until done 
o Other atomic instructions cannot get to the bus 
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2. Reserve the cache block involved until done 
o Obtain exclusive permission (e.g. “M” in MESI) 
o Reject or delay any invalidation or intervention requests 

until done 

3. Provide “illusion” of atomicity instead  
o Using load-link/store-conditional (to be discussed later) 

Test and set 
test-and-set can be used like this to implement a lock: 

lock:   t&s R1, &lockvar  // R1 = MEM[&lockvar];  
                          // if (R1==0) MEM[&lockvar]=1  
        bnz R1, lock;     // jump to lock if R1 != 0  
        ret               // return to caller  
unlock: sti &lockvar, #0  // MEM[&lockvar] = 0  
        ret               // return to caller 

What value does lockvar have when the lock is acquired? free?  
 

Here is an example of test-and-set execution.  Describe what it 
shows. 

 

 
 

Let’s look at how a sequence of test-and-sets by three processors 
plays out: 



© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 4 

Request P1 P2 P3 BusRequest 
Initially – – – – 
P1: t&s M – – BusRdX 
P2: t&s I M – BusRdX 
P3: t&s I I M BusRdX 
P2: t&s I M I BusRdX 
P1: unlock M I I BusRdX 
P2: t&s I M I BusRdX 
P3: t&s I I M BusRdX 
P3: t&s I I M – 
P2: unlock I M I BusRdX 
P3: t&s I I M BusRdX 
P3: unlock I I M – 

How does test-and-set perform on the four metrics listed above? 

• Uncontended latency 
• Fairness 
• Traffic 
• Storage 

Drawbacks of Test&Set Lock (TSL) 
What is the main drawback of test&set locks?   

•  
 

•  
 
 

Without changing the lock mechanism, how can we diminish this 
overhead? 

•   : pause for awhile  
 

o    by too little:      

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSeqkDQaU0RH-BjYy3Wv-RScNgqLrFuKF5u2suMNlgNtAo31XA/viewform
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o    by too much:       

• Exponential   : Increase the     interval 
exponentially with each failure. 

Test and Test&Set Lock (TTSL) 
• Busy-wait with ordinary read operations, not test&set. 

o Cached lock variable will be invalidated when release 
occurs 

• When value changes (to 0), try to obtain lock with test&set 
o Only one attempter will succeed; others will fail and start 

testing again. 

Let’s compare the code for TSL with TTSL. 

TSL: 

lock:   t&s R1, &lockvar  // R1 = MEM[&lockvar];  
                          // if (R1==0) MEM[&lockvar]=1  
        bnz R1, lock;     // jump to lock if R1 != 0  
        ret               // return to caller  
unlock: sti &lockvar, #0  // MEM[&lockvar] = 0  
        ret               // return to caller 

TTSL: 
 
lock:   ld R1, &lockvar  // R1 = MEM[&lockvar]  
        bnz R1, lock;    // jump to lock if R1 != 0  
        t&s R1, &lockvar // R1 = MEM[&lockvar];  
                         // if (R1==0)MEM[&lockvar]=1  
        bnz R1, lock;    // jump to lock if R1 != 0  
        ret              // return to caller  
 
unlock: sti &lockvar, #0 // MEM[&lockvar] = 0  
        ret              // return to caller  
 
 

The lock method now contains two loops.  What would happen if we 
removed the second loop?   
 



© 2022 Edward F. Gehringer CSC/ECE 506 Lecture Notes, Spring 2022 6 

Here’s a trace of a TSL, and then TTSL, execution.  Let’s compare 
them line by line. 

Fill out this table: 

 TSL TTSL 
# BusReads   
# BusReadXs   
# BusUpgrs   
# invalidations   
 
(What’s the proper way to count invalidations?)   
 

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfAE8wYLyzN4kQhpMCMQQjJlvqCHIM1Hu-Y5JI7yOvkv-Idgw/viewform
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TSL: Request P1 P2 P3 BusRequest 
Initially – – – – 
P1: t&s M – – BusRdX 
P2: t&s I M – BusRdX 
P3: t&s I I M BusRdX 
P2: t&s I M I BusRdX 
P1: unlock M I I BusRdX 
P2: t&s I M I BusRdX 
P3: t&s I I M BusRdX 
P3: t&s I I M – 
P2: unlock I M I BusRdX 
P3: t&s I I M BusRdX 
P3: unlock I I M – 

 

 
 
  

 
TSL vs. TTSL summary 

TTSL: Request P1 P2 P3 Bus Request 
Initially – – – – 
P1: ld E – - BusRd 
P1: t&s M – – – 
P2: ld S S – BusRd 
P3: ld S S S BusRd 
P2: ld S S S – 
P1: unlock M I I BusUpgr 
P2: ld S S I BusRd 
P2: t&s I M I BusUpgr 
P3: ld I S S BusRd 
P3: ld I S S – 
P2: unlock I M I BusUpgr 
P3: ld I S S BusRd 
P3: t&s I I M BusUpgr 
P3: unlock I I M – 
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• Successful lock acquisition: 
o 2 bus transactions in TTSL  

 1 BusRd to intervene with a remotely cached block 
 1 BusUpgr to invalidate all remote copies 

o vs. only 1 in TSL 
 1 BusRdX to invalidate all remote copies   

 

• Failed lock acquisition: 
o 1 bus transaction in TTSL 

 1 BusRd to read a copy 
 then, loop until lock becomes free 

o vs. unlimited with TSL 
 Each attempt generates a BusRdX 

 
LL/SC 

• TTSL is an improvement over TSL. 

• But bus-based locking 
o has a limited applicability (explain)  

 
o is not scalable with fine-grain locks (explain)  

 
 

• Suppose we could lock a cache block instead of a bus … 
o Expensive, must rely on buffering or NACK  

 

• Instead of providing atomicity, can we provide an illusion of 
atomicity instead? 

o This would involve detecting a violation of atomicity. 
o If something “happens to” the value loaded, cancel the 

store (because we must not allow newly stored value to 
become visible to other processors) 
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o Go back and repeat all other instructions (load, branch, 
etc.). 

This can be done with two new instructions: 

• Load Linked/Locked (LL) 
o reads a word from memory, and 
o stores the address in a special LL register 

o The LL register is cleared if anything happens that may 
break atomicity, e.g.,  
 A context switch occurs 
 The block containing the address in the LL register 

is invalidated. 

• Store Conditional (SC) 
o tests whether the address in the LL register matches the 

store address 
o if so, store succeeds: store goes to cache/memory; 
o else, store fails: the store is canceled, 0 is returned. 

 
Here is the code. 

lock: LL R1, &lockvar // R1 = lockvar;  
                      // LINKREG = &lockvar  
      bnz R1, lock    // jump to lock if R1 != 0       
      add R1, R1, #1  // R1 = 1  
      SC R1, &lockvar // lockvar = R1;  
      beqz R1, lock   // jump to lock if SC fails  
      ret             // return to caller  
 
unlock: sti &lockvar, #0  // lockvar = 0  
        ret              // return to caller  
 
Note that this code, like the TTSL code, consists of two loops.  
Compare each loop with its TTSL counterpart. 

• The first loop  
• The second loop  
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Here is a trace of execution.  Compare it with TTSL.   
 

 Request P1 P2 P3 BusRequest 
Initially – – – – 
P1: LL E – – BusRd 
P1: SC M – – – 
P2: LL S S – BusRd 
P3: LL S S S BusRd 
P2: LL S S S – 
P1: unlock M I I BusUpgr 
P2: LL S S I BusRd 
P2: SC I M I BusUpgr 
P3: LL I S S BusRd 
P3: LL I S S – 
P2: unlock I M I BusUpgr 
P3: LL I S S BusRd 
P3: SC I I M BusUpgr 
P3: unlock I I M – 

 
• Similar bus traffic 

o Spinning using loads ⇒ no bus transactions when the 
lock is not free 

o Successful lock acquisition involves two bus transactions.  
What are they?   

• But a failed SC does not generate a bus transaction (in TTSL, 
all test&sets generate bus transactions). 

o Why don’t SCs fail often?   
 
 

Limitations of LL/SC 

• Suppose a lock is highly contended by p threads 
o There are O(p) attempts to acquire and release a lock 

https://docs.google.com/forms/d/e/1FAIpQLScIeyCrLVAWUWeTwYB4peorYNFIwy8K3hCW5Avserr1s2VMEw/viewform?usp=sf_link
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o A single release invalidates O(p) caches, causing O(p) 
subsequent cache misses 

o Hence, each critical section causes O(p2) bus traffic 
 

• Fairness: There is no guarantee that a thread that contends for 
a lock will eventually acquire it. 

 
These issues can be addressed by two different kinds of locks. 

Ticket Lock 
• Ensures fairness, but still incurs O(p2) traffic 
• Uses the concept of a “bakery” queue 
• A thread attempting to acquire a lock is given a ticket number 

representing its position in the queue. 
• Lock acquisition order follows the queue order. 

Implementation: 

ticketLock_init(int *next_ticket, int *now_serving) {  
  *now_serving = *next_ticket = 0;  
}  
 
ticketLock_acquire(int *next_ticket, int *now_serving) {  
  my_ticket = fetch_and_inc(next_ticket);  
  while (*now_serving != my_ticket) {};  
}  
 
ticketLock_release(int *next_ticket, int *now_serving) {  
  *now_serving++;  
} 

Trace: 
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Steps next_ticket now_serving 
my_ticket 

P1 P2 P3 
Initially 0 0 – – – 
P1: fetch&inc 1 0 0 – – 
P2: fetch&inc 2 0 0 1 – 
P3: fetch&inc 3 0 0 1 2 
P1:now_serving++ 3 1 0 1 2 
P2:now_serving++ 3 2 0 1 2 
P3:now_serving++ 3 3 0 1 2 

Note that fetch&inc can be implemented with LL/SC.  
Array-Based Queueing Locks 
With a ticket lock, a release still invalidates O(p) caches. 

Idea:  Avoid this by letting each thread wait for a unique variable.  
Waiting processes poll on different locations in an array of size p. 

Just change now_serving to an array!  (renamed “can_serve”). 

A thread attempting to acquire a lock is given a ticket number in the 
queue. 
Lock acquisition order follows the queue order 

• Acquire 
o fetch&inc obtains the address on which to spin (the next 

array element). 
o We must ensure that these addresses are in different 

cache lines or memories 
• Release 

o Set next location in array to 1, thus waking up process 
spinning on it. 

Advantages and disadvantages: 

• O(1) traffic per acquire with coherent caches 
o And each release invalidates only one cache. 

• FIFO ordering, as in ticket lock, ensuring fairness 
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• But, O(p) space per lock 
• Good scalability for bus-based machines 

Implementation: 

ABQL_init(int *next_ticket, int *can_serve) {  
  *next_ticket = 0;  
  for (i=1; i<MAXSIZE; i++)  
     can_serve[i] = 0;  
  can_serve[0] = 1;  
} 

ABQL_acquire(int *next_ticket, int *can_serve) {  
  *my_ticket = fetch_and_inc(next_ticket) % MAXSIZE;  
  while (can_serve[*my_ticket] != 1) {};  
}  

ABQL_release(int *next_ticket, int *can_serve) {  
  can_serve[*my_ticket + 1] = 1;  
  can_serve[*my_ticket] = 0; // prepare for next time  
}  

Trace: 

Steps next_ticket can_serve[] 
my_ticket 

P1 P2 P3 
Initially 0 [1, 0, 0, 0] – – – 
P1: f&i 1 [1, 0, 0, 0] 0 – – 
P2: f&i 2 [1, 0, 0, 0] 0 1 – 
P3: f&i 3 [1, 0, 0, 0] 0 1 2 
P1: can_serve[1]=1 3 [0, 1, 0, 0] 0 1 2 
P2: can_serve[2]=1 3 [0, 0, 1, 0] 0 1 2 
P3: can_serve[3]=1 3 [0, 0, 0, 1] 0 1 2 

 
Let’s compare array-based queueing locks with ticket locks. 

Fill out this table, assuming that 10 threads are competing: 

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSc0EjVSsPEDOiLgzS_lNu4SLutmW9BAUsfDMFcqt5_pOARerg/viewform
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 Ticket locks Array-based 
queueing locks 

#of invalidations   
# of subsequent 
cache misses   

 

Comparison of lock implementations 

Criterion TSL TTSL LL/SC Ticket ABQL 

Uncontested latency Lowest Lower Lower Higher Higher 

1 release max traffic O(p) O(p) O(p) O(p) O(1) 
Wait traffic High Low – – – 
Storage  O(1) O(1) O(1) O(1) O(p) 
Fairness guaranteed? No No No Yes Yes 
 
 
Discussion: 

• Design must balance latency vs. scalability 

o ABQL is not necessarily best. 
o Often LL/SC locks perform very well. 
o Scalable programs rarely use highly-contended locks. 

• Fairness sounds good in theory, but 

o Must ensure that the current/next lock holder does not 
suffer from context switches or any long delay events 
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