
CSC/ECE 506: Architecture of Parallel Computers

Bus-Based Coherent

Multiprocessors

1

Lecture 13

(Chapter 7)

CSC/ECE 506: Architecture of Parallel Computers

Outline

 Bus-based coherence

 Memory consistency

 Sequential consistency

 Invalidation vs. update coherence

protocols

CSC/ECE 506: Architecture of Parallel Computers

Several Configurations for a Memory System

3

I/O devicesMem

P1

$ $

Pn

P1

Sw itch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Inter connection netw ork

$

Pn

Mem Mem

(b) Bus-based shar ed memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Inter connection netw ork

$

Pn

Mem Mem

(d) Distributed-memory

CSC/ECE 506: Architecture of Parallel Computers

Assume a Bus-Based SMP

• Built on top of two fundamentals of uniprocessor system

– Bus transactions

– Cache-line finite-state machine

• Uniprocessor bus transaction:

– Three phases: arbitration, command/address, data transfer

– All devices observe addresses, one is responsible

• Uniprocessor cache states:

– Every cache line has a finite-state machine

– In WT+write no-allocate: Valid, Invalid states

– WB: Valid, Invalid, Modified (“Dirty”)

• Multiprocessors extend both these somewhat to implement

coherence

4

CSC/ECE 506: Architecture of Parallel Computers

Snoop-Based Coherence on a Bus

• Basic Idea

– Assign a snooper to each processor so that all bus transactions

are visible to all processors (“snooping”).

– Processors (via cache controllers) change line states on relevant

events.

5

CSC/ECE 506: Architecture of Parallel Computers

Snoop-Based Coherence on a Bus

• Basic Idea

– Assign a snooper to each processor so that all bus transactions

are visible to all processors (“snooping”).

– Processors (via cache controllers) change line states on relevant

events.

• Implementing a Protocol

– Each cache controller reacts to processor and bus events:

• Takes actions when necessary

– Updates state, responds with data, generates new bus

transactions

– The memory controller also snoops bus transactions and

returns data only when needed

– Granularity of coherence is typically cache line/block

• Same granularity as in transfer to/from cache

6

CSC/ECE 506: Architecture of Parallel Computers

Coherence with Write-Through Caches

7

sum = 0;

begin parallel

for (i=0; i<2; i++) {

lock(id, myLock);

sum = sum + a[i];

unlock(id, myLock);

end parallel

Print sum;

Suppose a[0] = 3 and a[1] = 7

P1

Cache

P2

Cache

Pn

Cache

. . .

= Snooper

– What happens when we snoop a write?

• Write-update protocol: write is immediately propagated or

• Write-invalidation protocol: causes miss on later access, and memory up-
to-date via write-through

CSC/ECE 506: Architecture of Parallel Computers

Snooper Assumptions

• Atomic bus

• Writes occur in

program order

8

CSC/ECE 506: Architecture of Parallel Computers

Transactions

• To show what’s going on, we will use

diagrams involving—

– Processor transactions

• PrRd

• PrWr

– Snooped bus transactions

• BusRd

• BusWr

9

CSC/ECE 506: Architecture of Parallel Computers

Write-Through State-Transition Diagram

10

V

I

PrRd/BusRd

PrRd/-- PrWr/BusWr

PrWr/BusWr

BusWr/--

Processor-initiated transactions

Bus-snooper-initiated transactions

• Key: A write invalidates all other caches

• Therefore, we have:

– Modified line: exists as V in only 1 cache

– Clean line: exists as V in at least 1 cache

– Invalid state represents invalidated line or not present in the cache

write-through

no-write-allocate

write invalidate

How does this protocol

guarantee write

propagation?

How does it guarantee

write serialization?

https://docs.google.com/forms/d/e/1FAIpQLSeJ20QRV9Nmf4k0Z5LxHTK3TlOejXGMTnYTDfgJIGcE7L6uqQ/viewform

CSC/ECE 506: Architecture of Parallel Computers

Is It Coherent?

• Write propagation:

– through ___________

– then a ____________ , loading the new value

• Write serialization: Assume—

– atomic bus

– invalidation happens instantly

– writes serialized by _____________________

• So are invalidations

• Do reads see the latest writes?

– Read misses generate bus transactions, so will get the last write

– Read hits: do not appear on bus, but are preceded by

• most recent write by this processor (self), or

• most recent read miss by this processor

– Thus, reads hits see latest written values (according to bus order)

11

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

12

A memory operation M2 follows a memory operation M1 if the operations are issued

by the same processor and M2 follows M1 in program order.

1. Read follows write W if read generates bus transaction that follows W’s xaction.

• Writes establish a partial order

• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

1

1

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

13

A memory operation M2 follows a memory operation M1 if the operations are issued

by the same processor and M2 follows M1 in program order.

1. Read follows write W if read generates bus transaction that follows W’s xaction.

2. Write follows read or write M if M generates bus transaction and the transaction

for the write follows that for M.

• Writes establish a partial order

• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

2

2

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

CSC/ECE 506: Architecture of Parallel Computers

Determining Orders More Generally

14

A memory operation M2 follows a memory operation M1 if the operations are issued

by the same processor and M2 follows M1 in program order.

1. Read follows write W if read generates bus transaction that follows W’s xaction.

2. Write follows read or write M if M generates bus transaction and the transaction

for the write follows that for M.

3. Write follows read if read does not generate a bus transaction and is not already

separated from the write by another bus transaction.

• Writes establish a partial order

• Doesn’t constrain ordering of reads, though bus will order read misses too

–any order among reads between writes is fine, as long as in program order

3

3

R W

R

R R

R R

RR R W

R

R

R R

RR

R

P0:

P1:

P2:

CSC/ECE 506: Architecture of Parallel Computers

Problem with Write-Through

• Write-through can guarantee coherence, but needs a lot of bandwidth.

– Every write goes to the shared bus and memory

– Example:

200MHz, 1-CPI processor, and 15% instrs. are 8-byte stores

Each processor generates 30M stores, or 240MB data, per second

How many processors could a 1GB/s bus support without saturating?

– Thus, unpopular for SMPs

• Write-back caches

– Write hits do not go to the bus  reduce most write bus transactions

– But now how do we ensure write propagation and serialization?

15

https://docs.google.com/forms/d/e/1FAIpQLSfIU0M3QoYU3Xi240jWohDpmIGAKn-Ef8SYcz0QJbLSwi9EUw/viewform

CSC/ECE 506: Architecture of Parallel Computers

Lecture 11 Outline

 Bus-based coherence

 Memory consistency

 Sequential consistency

 Invalidation vs. update coherence
protocols

16

CSC/ECE 506: Architecture of Parallel Computers

Let’s Switch Gears to Memory Consistency

17

• Sequential consistency (SC) corresponds to our intuition.

• Other memory consistency models do not obey our intuition!

• Coherence doesn’t help; it pertains only to a single location

P1 P2

/*Assume initial values of A and flag are 0*/

A = 1; while (flag == 0); /*spin idly*/

flag = 1; print A;

• Recall Peterson’s algorithm (turn= …; interested[process]=…)

• When “multiple” means “all”, we have sequential consistency (SC)

Consistency: Writes to multiple locations are visible to all in the same order

Coherence: Writes to a single location are visible to all in the same order

CSC/ECE 506: Architecture of Parallel Computers

Another Example of Ordering

18

• What do you think the results should be? You may think:

• 1a, 1b, 2a, 2b 

• 1a, 2a, 2b, 1b 

• 2a, 2b, 1a, 1b 

P1 P2

/*Assume initial values of A and B are 0 */

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

programmers’ intuition:

sequential consistency

{A=1, B=2}

{A=1, B=0}

{A=0, B=0}

• Whatever our intuition is, we need

• an ordering model for clear semantics across different locations

• as well as cache coherence!

so programmers can reason about what results are possible.

• Is {A=0, B=2} possible? • Yes, suppose P2 sees: 1b, 2a, 2b, 1a

e.g. evil compiler, evil interconnection.

https://docs.google.com/forms/d/e/1FAIpQLScBNyRduF4yGR6CY6EWD7VL6a7IDVy06wvuGaHSKypHy4e3rg/viewform

CSC/ECE 506: Architecture of Parallel Computers

A Memory-Consistency Model …

• Is a contract between programmer and system

• Necessary to reason about correctness of
shared-memory programs

• Specifies constraints on the order in which
memory operations (from any process) can
appear to execute with respect to one another

• Given a load, constrains the possible values returned by it

• Implications for programmers

• Restricts algorithms that can be used
• e.g., Peterson’s algorithm, home-brew synchronization will be

incorrect in machines that do not guarantee SC

• Implications for compiler writers and computer architects

• Determines how much accesses can be reordered.

19

CSC/ECE 506: Architecture of Parallel Computers

Lecture 11 Outline

20

 Bus-based coherence

 Memory consistency

 Sequential consistency

 Invalidation vs. update coherence protocols

CSC/ECE 506: Architecture of Parallel Computers

Sequential Consistency

21

“A multiprocessor is sequentially consistent if the result of any execution is

the same as if the operations of all the processors were executed in some

sequential order, and the operations of each individual processor appear in

this sequence in the order specified by its program.” [Lamport, 1979]

• (as if there were no caches, and a single memory)

• Total order achieved by interleaving accesses from different processes

• Maintains program order, and memory operations, from all processes,

appear to [issue, execute, complete] atomically w.r.t. others

Processors
issuing memory
references as
per program or der

P1 P2 Pn

Memory

The “sw itch” is randomly
set after each memory
reference

CSC/ECE 506: Architecture of Parallel Computers

What Really Is Program Order?

• Intuitively, the order in

which operations appear

in source code

• Thus, we assume order

as seen by programmer,

• the compiler is prohibited from reordering memory

accesses to shared variables.

• Note that this is one reason parallel programs

are less efficient than serial programs.

22

CSC/ECE 506: Architecture of Parallel Computers

What Reordering Is Safe in SC?

23

• Possible outcomes for (A,B): (0,0), (1,0), (1,2); impossible under SC: (0,2)

• Proof: By program order we know 1a  1b and 2a  2b

A = 0 implies 2b  1a, which implies 2a  1b

B = 2 implies 1b  2a, which leads to a contradiction

• BUT, actual execution 1b 1a  2b  2a is SC, despite not being in program order

– It produces the same result as 1a  1b  2a  2b.

– Actual execution 1b  2a  2b  1a is not SC, as shown above

– Thus, some reordering is possible, but difficult to reason that it ensures SC

What matters is the order in which code appears to execute,

not the order in which it actually executes.

P1 P2

/*Assume initial values of A and B are 0 */

(1a) A = 1; (2a) print B;

(1b) B = 2; (2b) print A;

CSC/ECE 506: Architecture of Parallel Computers

Conditions for SC

• Two kinds of requirements

– Program order

• Memory operations issued by a process must appear to become
visible (to others and itself) in program order.

– Global order

• Atomicity: One memory operation should appear to complete
with respect to all processes before the next one is issued.

• Global order: The same order of operations is seen by all
processes.

• Tricky part: how to make writes atomic?

–  Necessary to detect write completion

– Read completion is easy: a read completes when the data returns

• Who should enforce SC?

– Compiler should not change program order

– Hardware should ensure program order and atomicity

24

CSC/ECE 506: Architecture of Parallel Computers

Write Atomicity

25

• Write Atomicity ensures same write ordering is seen by all procs.

– In effect, extends write serialization to writes from multiple

processes

• Under SC, transitivity implies that A should print as 1.

Without SC, why might it not?

P1 P2 P3

A=1; while (A==0);

B=1; while (B==0);

print A;

https://docs.google.com/forms/d/e/1FAIpQLSfg6DpPmIR3c1794bn3IyjxlZkanfOR_Q2wCiQxqQtdOBHXxQ/viewform

CSC/ECE 506: Architecture of Parallel Computers

Is the Write-Through Example SC?

o Assume no write buffers, or load-store bypassing

o Yes, it is SC, because of the atomic bus:

• Any write and read misses (to all locations) are serialized

by the bus into bus order.

• If a read obtains value of write W, W is guaranteed to have

completed since it caused a bus transaction

• When write W is performed with respect to any processor,

all previous writes in bus order have completed

26

CSC/ECE 506: Architecture of Parallel Computers

Lecture 11 Outline

27

 Bus-based coherence

 Memory consistency

 Sequential consistency

 Invalidation vs. update coherence protocols

CSC/ECE 506: Architecture of Parallel Computers

Dealing with “Dirty” Lines

• What does it mean to say a cache line is “dirty”?

– That at least one of its words has been changed since it was

brought in from main memory.

• Dirty in a uniprocessor vs. a multiprocessor

– Uniprocessor:

• Only need to keep track of

whether a line has been modified.

• Multiprocessor:

• Keep track of whether line is modified.

• Keep track of which cache owns the line.

• Thus, a cache line must know whether it is—

• Exclusive: “I’m the only one that has it, other than possibly

main memory.”

• The Owner: “I’m responsible for supplying the block upon a

request for it.”
28

CSC/ECE 506: Architecture of Parallel Computers

Invalidation vs. Update Protocols

• Question: What happens to a line if another

processor changes one of its words?

– It can be invalidated.

– It can be updated.

CSC/ECE 506: Architecture of Parallel Computers

Invalidation-Based Protocols

• Idea: When I write the block, invalidate everybody else

 I get exclusive state.

• “Exclusive” means …

• Can modify without notifying anyone else (i.e., without a bus

transaction)

• But, before writing to it,

• Must first get block in exclusive state

• Even if block is already in state V, a bus transaction

(Read Exclusive = RdX) is needed to invalidate others.

• What happens on a writeback

– if the block is not dirty?

– if the block is dirty?

30

https://docs.google.com/forms/d/e/1FAIpQLSc2EZsSJeYtXQoHTyhNqYB5Tak_rLGItdea71-jTvbQ8Z_8vQ/viewform

CSC/ECE 506: Architecture of Parallel Computers

-Based Protocols

• Idea: If this block is written, send the new word to all

other caches.

• New bus transaction: Update

• Compared to invalidate, what are advs. and disads.?

• Advantages

• Other processors don’t miss on next access

• Saves refetch: In invalidation protocols, they would miss & bus

transaction.

• Saves bandwidth: A single bus transaction updates several

caches

• Disadvantages

• Multiple writes by same processor cause multiple update

transactions

• In invalidation, first write gets exclusive ownership, other writes local

31

https://docs.google.com/forms/d/e/1FAIpQLScwG3q_n0jCvpRP2YzcLrQy4PKj5ykDh6iVeuAjWgF6LMELNg/viewform

CSC/ECE 506: Architecture of Parallel Computers

Invalidate versus Update

• Is a block written by one processor read by other

processors before it is rewritten?

• Invalidation:

• Yes  Readers will take a miss.

• No  Multiple writes can occur without additional traffic.

• Copies that won’t be used again get cleared out.

• Update:

• Yes  Readers will not miss if they had a copy previously

• A single bus transaction will update all copies

• No  Multiple useless updates, even to dead copies

• Invalidation protocols are much more popular.

• Some systems provide both, or even hybrid

32

CSC/ECE 506: Architecture of Parallel Computers

Summary

• One solution for small-scale multiprocessors is a shared

bus.

• State-transition diagrams can be used to show how a

cache-coherence protocol operates.
– The simplest protocol is write-through, but it has performance problems.

• Sequential consistency guarantees that memory

operations are seen in order throughout the system.

– It is fairly easy to show whether a result is or is not sequentially

consistent.

• The two main types of coherence protocols are

invalidate and update.

– Invalidate usually works better, because it frees up cache lines

more quickly.

