
CSC/ECE 506: Architecture of Parallel Computers

The Cache-Coherence

Problem

Lecture 12

(Chapter 6)

1

CSC/ECE 506: Architecture of Parallel Computers

Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Shared vs. Distributed Memory

• What is the difference between …

– SMP

– NUMA

– Cluster ?

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSdzCBa2Chsw0GrIiWV86eUehEYd_ogoJiTVCQSw1V34gqMZDw/viewform

CSC/ECE 506: Architecture of Parallel Computers

Small to Large Multiprocessors

• Small scale (2–30 processors): shared memory

– Often on-chip: shared memory (+ perhaps shared cache)

– Most processors have MP support out of the box

– Most of these systems are bus-based

– Popular in commercial as well as HPC markets

• Medium scale (64–256): shared memory and clusters

– Clusters are cheaper

– Often, clusters of SMPs

• Large scale (> 256): few shared memory and many clusters

– SGI Altix 3300: 512-processor shared memory (NUMA)

– Large variety on custom/off-the-shelf components such as
interconnection networks.

• Beowulf clusters: fast Ethernet

• Myrinet: fiber optics

• IBM SP2: custom

4

http://www.sys-con.com/node/44889

CSC/ECE 506: Architecture of Parallel Computers

Shared Memory vs. No Shared Memory

• Advantages of shared-memory machines (vs. distributed

memory w/same total memory size)

– Support shared-memory programming

• Clusters can also support it via software shared

virtual memory, but with much coarser granularity

and higher overheads

– Allow fine-grained sharing

• You can’t do this with messages—there’s too

much overhead to share small items

– Single OS image

• Disadvantage of shared-memory machines

– Cost of providing shared-memory abstraction

5

CSC/ECE 506: Architecture of Parallel Computers

A Bus-Based Multiprocessor

P-Pr o bus (64-bit data, 36-bit addr ess, 66 MHz)

CPU

Bus interface

MIU

P-Pr o
module

P-Pr o
module

P-Pr o
module256-KB

L2 $
Interrupt
controller

PCI
bridge

PCI
bridge

Memory
controller

1-, 2-, or 4-w ay
interleaved

DRAM
P

C
I b

us

P
C

I b
usPCI

I/O
cards

6

CSC/ECE 506: Architecture of Parallel Computers

Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Will This Parallel Code Work Correctly?

sum = 0;

begin parallel

for (i=1; i<=2; i++) {

lock(id, myLock);

sum = sum + a[i];

unlock(id, myLock);

end parallel

print sum;

Suppose a[1] = 3 and

a[2] = 7

Two issues:

• Will it print sum = 10?

• How can it support locking correctly?

8

CSC/ECE 506: Architecture of Parallel Computers

The Cache-Coherence Problem

sum = 0;

begin parallel

for (i=1; i<=2; i++) {

lock(id, myLock);

sum = sum + a[i];

unlock(id, myLock);

end parallel

print sum;

Suppose a[1] = 3 and

a[2] = 7

P1

Cache

P2

Cache

Pn

Cache

. . .

• Will it print sum = 10?

9

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

Start state. All caches

empty and main memory

has Sum = 0.

P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller

Trace

P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

Bus

10

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 reads Sum from memory. P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller
Trace

P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

Bus

Sum=0 V

11

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P2 reads. Let’s assume this

comes from memory too.
P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller

Bus

Sum=0 V Sum=0 V

Trace

P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

12

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 writes. This write goes

to the cache.
P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller

Bus

Sum=3 D Sum=0 V

Trace

P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

13

Sum=0 V

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P2 writes. P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller

Bus

Sum=3 D Sum=7 D

Trace

P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

14

Sum=0 V

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem Illustration

P1 reads. P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 0

Controller

Bus

Sum=3 D Sum=7 D

Trace

P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

15

CSC/ECE 506: Architecture of Parallel Computers

Cache-Coherence Problem

• Do P1 and P2 see the same sum?

• Does it matter if we use a WT cache?

• The code given at the start of the animation does not

exhibit the same coherence problem shown in the

animation. Explain. Is the result still incoherent?

• What if we do not have caches, or sum is uncacheable.

Will it work?

16

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSccy1im_Qw8hFmlr9xx03lfXY35tx8IsZBHQTVJQeBtENepLQ/viewform

CSC/ECE 506: Architecture of Parallel Computers

Write-Through Cache Does Not Work

P1 reads. P1

Cache

P2

Cache

P3

Cache

Main memory

Sum = 7

Controller

Trace

P1 Read Sum

P2 Read Sum

P1 Write Sum = 3

P2 Write Sum = 7

P1 Read Sum

Bus

Sum=3 D Sum=7 D

17

CSC/ECE 506: Architecture of Parallel Computers

Software Lock Using a Flag

• Here’s simple code to implement a lock:

• Will this guarantee mutual exclusion?

• Let’s look at an algorithm that will …

void lock (int process, int lvar) { // process is 0 or 1

while (lvar == 1) {} ;

lvar = 1;

}

void unlock (int process, int lvar) {

lvar = 0;

}

18

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSdp_ChN1Sl_asRIbUSwumPNC6qoyWwVoREvDR4E8sG-9LHSAA/viewform

CSC/ECE 506: Architecture of Parallel Computers

Outline

• Bus-based multiprocessors

• The cache-coherence problem

• Peterson’s algorithm

• Coherence vs. consistency

CSC/ECE 506: Architecture of Parallel Computers

Peterson’s Algorithm

20

• Acquisition of lock() occurs only if

1.interested[other] == FALSE: either the other process
has not competed for the lock, or it has just called unlock(),
or

2.turn != other: the other process is competing, has set the
turn to our process, and will be blocked in the while() loop

int turn;

int interested[n]; // initialized to false

void lock (int process, int lvar) { // process is 0 or 1

int other = 1 – process;

interested[process] = TRUE;

turn = other;

while (turn == other && interested[other] == TRUE) {} ;

}

// Post: turn != other or interested[other] == FALSE

void unlock (int process, int lvar) {

interested[process] = FALSE;

}

CSC/ECE 506: Architecture of Parallel Computers

No Race

21

// Proc 0

interested[0] = TRUE;

turn = 1;

while (turn==1 && interested[1]==TRUE)

{};

// since interested[1] starts out FALSE,

// Proc 0 enters critical section

// Proc 1

interested[1] = TRUE;

turn = 0;

while (turn==0 && interested[0]==TRUE)

{};

// since turn==0 && interested[0]==TRUE

// Proc 1 waits in the loop until Proc 0

// releases the lock// unlock

interested[0] = FALSE;

// now Proc 1 can exit the loop and

// acquire the lock

CSC/ECE 506: Architecture of Parallel Computers

Race

22

while (turn==1 && interested[1]==TRUE)

{};

// since turn == 0,

// Proc 0 enters critical section

while (turn==0 && interested[0]==TRUE)

{};

// since turn==0 && interested[0]==TRUE

// Proc 1 waits in the loop until Proc 0

// releases the lock

// unlock

interested[0] = FALSE;

// now Proc 1 can exit the loop and

// acquire the lock

// Proc 0

interested[0] = TRUE;

turn = 1;

// Proc 1

interested[1] = TRUE;

turn = 0;

CSC/ECE 506: Architecture of Parallel Computers

When Does Peterson’s Alg. Work?

23

• Correctness depends on the global order of

• Thus, it will not work if—

– The compiler reorders the operations

• There’s no data dependence, so unless the compiler is
notified, it may well reorder the operations

• This prevents compiler from using aggressive optimizations
used in serial programs

– The architecture reorders the operations

• Write buffers, memory controller

• Network delay for statement A

• If turn and interested[] are cacheable, A may result in
cache miss, but B in cache hit

• This is called the memory-consistency problem.

A: interested[process] = TRUE;

B: turn = other;

CSC/ECE 506: Architecture of Parallel Computers

Race on a Non-Sequentially Consistent Machine

24

// Proc 0

interested[0] = TRUE;

turn = 1;

while (turn==1 && interested[1]==TRUE)

{};

// Proc 1

interested[1] = TRUE;

turn = 0;

while (turn==0 && interested[0]==TRUE)

{};

CSC/ECE 506: Architecture of Parallel Computers

Race on a Non-Sequentially Consistent Machine

25

// Proc 0

interested[0] = TRUE;

turn = 1;

while (turn==1 && interested[1]==TRUE)

{};

// since interested[1] == FALSE,

// Proc 0 enters critical section

// Proc 1

turn = 0;

interested[1] = TRUE;

while (turn==0 && interested[0]==TRUE)

{};

// since turn==1,

// Proc 1 enters critical section

reordered

Can you explain what has gone wrong here?

https://docs.google.com/a/ncsu.edu/forms/d/e/1FAIpQLSfMOOOJ9vYEZbHFD70myFwAolJxZ8OeCvtUm3YtvIinoelwpA/viewform

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

26

Cache coherence Memory consistency

Deals with the ordering of

operations to a single memory

location.

Deals with the ordering of

operations to different memory

locations.

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

27

Cache coherence Memory consistency

Deals with the ordering of

operations to a single memory

location.

Deals with the ordering of

operations to different memory

locations.

Tackled by hardware

• using coherence protocols.

• Hw. alone guarantees correctness

but with varying performance

Tackled by consistency models

• supported by hardware, but

• software must conform to the

model.

CSC/ECE 506: Architecture of Parallel Computers

Coherence vs. Consistency

28

Cache coherence Memory consistency

Deals with the ordering of

operations to a single memory

location.

Deals with the ordering of

operations to different memory

locations.

Tackled by hardware

• using coherence protocols.

• Hw. alone guarantees correctness

but with varying performance

Tackled by consistency models

• supported by hardware, but

• software must conform to the

model.

All protocols realize same abstraction

• A program written for 1 protocol

can run w/o change on any other.

Models provide diff. abstractions

• Compilers must be aware of the

model (no reordering certain

operations …).

• Programs must “be careful” in

using shared variables.

CSC/ECE 506: Architecture of Parallel Computers

Two Approaches to Consistency

• Sequential consistency

– Multi-threaded codes for uniprocessors automatically run

correctly

– How? Every shared R/W completes globally in program

order

– Most intuitive but worst performance

• Relaxed consistency models

– Multi-threaded codes for uniprocessor need to be ported to

run correctly

– Additional instruction (memory fence) to ensure global

order between 2 operations

29

CSC/ECE 506: Architecture of Parallel Computers

Cache Coherence

• Do we need caches?

– Yes, to reduce average data access time.

– Yes, to reduce bandwidth needed for bus/interconnect.

• Sufficient conditions for coherence:

– Notation: Requestproc(data)

– Write propagation:

• Rdi (X) must return the “latest” Wrj (X)

– Write serialization:

• Wri (X) and Wrj (X) are seen in the same order by everybody

– e.g., if I see w2 after w1, you shouldn’t see w2 before w1

– There must be a global ordering of memory

operations to a single location

– Is there a need for read serialization?

30

CSC/ECE 506: Architecture of Parallel Computers

A Coherent Memory System: Intuition

• Uniprocessors

– Coherence between I/O devices and processors

– Infrequent, so software solutions work

• uncacheable memory, uncacheable operations, flush

pages, pass I/O data through caches

• But coherence problem much more critical in multiprocessors

– Pervasive

– Performance-critical

– Necessitates a hardware solution

• * Note that “latest write” is ambiguous.

– Ultimately, what we care about is that any write is propagated

everywhere in the same order.

– Synchronization defines what “latest” means.

31

CSC/ECE 506: Architecture of Parallel Computers

Summary

• Shared memory with caches raises the problem of cache

coherence.

– Writes to the same location must be seen in the same

order everywhere.

• But this is not the only problem

– Writes to different locations must also be kept in order

if they are being depended upon for synchronizing

tasks.

– This is called the memory-consistency problem

32

